Giải giúp tớ với :1/2 +1/4+1/8+....+1/1024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(-1=-2+1;-\frac{1}{2}=-1+\frac{1}{2};-\frac{1}{4}=-\frac{1}{2}+\frac{1}{4};...;-\frac{1}{1024}=-\frac{1}{512}+\frac{1}{1024}\)
\(\Rightarrow-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=\left(-2+1\right)+\left(-1+\frac{1}{2}\right)+\left(-\frac{1}{2}+\frac{1}{4}\right)\)\(+...+\left(-\frac{1}{512}+\frac{1}{1024}\right)\)
\(=-2+1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{4}-...-\frac{1}{512}+\frac{1}{1024}\)
\(=-2+\frac{1}{1024}\)
\(=-\frac{2047}{1024}\)
Đặt \(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{2014}\)
\(\Rightarrow-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(-A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Rightarrow-2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(\Rightarrow-2A-\left(-A\right)=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{10}}\right)\)
\(-A=2-\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{1}{2^{10}}-2\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(\Rightarrow A=1-\frac{1}{1024}=\frac{1023}{1024}\)
Đặt A = 1 + 2 + 4 + 8 + 16 + ... + 1024
2A = 2 + 4 + 6 + 8 + 16 + 32 + ... + 2048
2A - A = ( 2 + 4 + 8 + 16 + 32 + ... + 2048 ) - ( 1 + 2 + 4 + 8 + 16 + ... + 1024 )
A = 2048 - 1
A = 2047
đặt A = \(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
ta có:
A = \(-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)
A = \(-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
Đặt B = \(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
ta có:
B = \(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
=> 2B = \(2+1+\frac{1}{2}+...+\frac{1}{512}\)
=> 2B - B = \(\left(2+1+\frac{1}{2}+...+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
=> B = \(2-\frac{1}{1024}\)
=> B = \(\frac{2048}{1024}-\frac{1}{1024}=\frac{2047}{1024}\)
Thay B vào A ta có:
A = \(\frac{-2047}{1024}\)
vậy A = \(\frac{-2047}{1024}\)
\(B=2+2^2+2^3+...+2^{10}\)
\(2B=2^2+2^3+...+2^{11}\)
\(2B-B=\left(2^2+2^3+...+2^{11}\right)-\left(2+2^2+...+2^{10}\right)\)
\(B=2^{11}-2\)
a)
Từ 1 đến 23 gồm có (29-1) : 2 + 1 = 15 số
15 số gồm có 7.5 cặp
Mà từng cặp số có tổng bằng 30 (tính từng cặp số ở hai đầu)
Vậy S = 30 * 7.5
= 225
=
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)
\(A=1-\dfrac{1}{2^{10}}\)
Đặt:
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(2A=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(A=1-\dfrac{1}{2^{10}}\)
\(A=1-\dfrac{1}{1024}=\dfrac{2023}{2024}\)