K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

\(\left(x-2\right)\left(2x+1\right)-5\left(x+3\right)=2x\left(x-3\right)+4\left(1+2x\right)-2\left(1+x\right)\)

\(2x^2+x-4x-2-5x-15=2x^2-6x+4+8x-2-2x\)

\(x-4x-2-5x-15=-6x+4+8x-2-2x\)

\(\Rightarrow-8x-17=2\)

\(-8x=19\Rightarrow x=-\dfrac{19}{8}\)

Vậy \(x=-\dfrac{19}{8}\)

19 tháng 7 2017

gio con noc ha ?!

19 tháng 7 2017

<=> 2x^2 +x-4x-2-5x-15=2x^2-6x+4+8x-2-2x

      2x^2-8x-17-2x^2-2=0

     -8x-19=0

x=-19/8

( Tham khảo nhé  !)

Trả lời :

( Ảnh dưới )

undefined

31 tháng 8 2021

ai biet

8 tháng 7 2020

\(3x\left(2x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x=-1\\x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}\)

8 tháng 7 2020

\(\frac{\frac{6}{5}+\frac{6}{35}-\frac{6}{125}-\frac{6}{2009}-\frac{6}{2011}}{\frac{7}{5}+\frac{7}{35}-\frac{7}{125}-\frac{7}{2009}-\frac{7}{2011}}\)

\(=\frac{6.(\frac{1}{5}+\frac{1}{35}-\frac{1}{125}-\frac{1}{2009}-\frac{1}{2011})}{7.(\frac{1}{5}+\frac{1}{35}-\frac{1}{125}-\frac{1}{2009}-\frac{1}{2011})}\)

\(=\frac{6}{7}\)

Tìm x

\(a,3x(2x+1)=0\)

\(\Rightarrow\hept{\begin{cases}3x=0\\2x+1=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=0\\x=\frac{-1}{2}\end{cases}}\)

Vậy \(x=0\)hoặc \(x=\frac{-1}{2}\)

\(b.\frac{2}{3}-\frac{1}{3}(x-\frac{3}{2})-\frac{1}{2}(2x+1)=5\)

\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)

\(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}-x(\frac{1}{3}+1)=5\)

\(\frac{4}{3}x=\frac{2}{3}-5\)

\(\frac{4}{3}x=\frac{-13}{3}\)

\(x=\frac{-13}{3}\div\frac{4}{3}\)

\(x=\frac{-13}{4}\)

Chúc ban học tốt

17 tháng 1 2016

a, Có (2x-4).(x-2)=0

suy ra 2x-4=0 hoặc x-2=0.

Nếu 2x-4=0

        2x   =4

          x   =2

Nếu x-2=0

        x    =2

Vậy x=2

29 tháng 7 2021

Bài 4: 

a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))

\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3

\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)

\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)

\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)

\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)

\(\Leftrightarrow\) \(2x^2+7x+3=0\)

\(\Delta=7^2-4.2.3=25\)\(\sqrt{\Delta}=5\)

Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:

\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)

Vậy ...

Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được

Bài 5: 

a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)

\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)

\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)

Vậy ...

Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\)\(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!

VD1:

a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)

\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)

\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)

Vậy ...

Phần b tương tự nha

c, \(\sqrt{3}x^2-\sqrt{12}=0\)

\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)

\(\Leftrightarrow\) \(x^2=2\)

\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)

Vậy ...

d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)

\(\Leftrightarrow\) \(x-1=5\)

\(\Leftrightarrow\) \(x=6\)

Vậy ...

VD2: 

Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)

b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))

\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(x^2=3\)

\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)

Vậy ...

c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x^2-4x=0\)

\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)

29 tháng 7 2021

cảm ơn bn nhiều nha

18 tháng 10 2021

\(a,\Rightarrow2x^2-18x-2x^2=0\\ \Rightarrow-18x=0\Rightarrow x=0\\ b,\Rightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\\ \Rightarrow5x=22\Rightarrow x=\dfrac{22}{5}\)

a: \(\Leftrightarrow5x^2-20x-41=x^2-10x+25+4x^2+4x+1-x^2+2x+\left(x-1\right)^2\)

\(\Leftrightarrow5x^2-20x-41=4x^2-4x+26+x^2-2x+1\)

\(\Leftrightarrow5x^2-20x-41=5x^2-6x+27\)

=>-14x=68

hay x=-34/7

b: \(\Leftrightarrow x^2-25-x^3+6x^2-12x+8-7x^2+x^3+1=\left(x+3\right)^3-x^3-9x^2\)

\(\Leftrightarrow-12x-16=x^3+9x^2+27x+27-x^3-9x^2=27x+27\)

=>-39x=43

hay x=-43/39

 

4 tháng 7 2018

Câu 1:

25 - 4.( -x - 1 ) + 3.(5x) = -x + 34

=> 25 + 4x + 4 + 15x = -x + 34

=> (25 + 4) + (4x + 15x) = -x + 34

=> 29 + 19x = -x + 34

=> 19x + x = 34 - 29

=> 20x = 5

=> x = \(\frac{1}{4}\)(T/m)

Vậy x =\(\frac{1}{4}\)

Câu 2:

Ta có: 11\(⋮\)2x - 1  

=> 2x - 1 \(\in\)Ư(11) = \(\left\{\pm1;\pm11\right\}\)

=> 2x \(\in\){2; 0; 12; -10}

=> x \(\in\){1; 0; 6; -5} (T/m)

Vậy x \(\in\){1; 0; 6; -5}

Câu 3:

Ta có: x + 12 \(⋮\)x - 2

=> x - 2 + 14 \(⋮\) x - 2

Mà x - 2 \(⋮\)  x - 2

=> 14 \(⋮\) x - 2

=> x - 2 \(\in\)Ư(14) \(\left\{\pm1;\pm2;\pm7;\pm14\right\}\)

=> x \(\in\){3; 1; 4; 0; 9; -5; 16; -12} (T/m)

Vậy x \(\in\){3; 1; 4; 0; 9; -5; 16; -12}

Câu 4

Ta có: 3x + 17 \(⋮\)x + 3

=> 3x + 9 + 8 \(⋮\)x + 3

=> 3(x + 3) + 8 \(⋮\)x + 3

Mà 3(x + 3) \(⋮\)x + 3

=> 8 \(⋮\)x + 3

=> x + 3\(\in\)Ư(8) =\(\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

=> x \(\in\){ -2; -4; -1; -5; 1; -7; 5; -11} (T/m)

Vậy x \(\in\){ -2; -4; -1; -5; 1; -7; 5; -11}

4 tháng 7 2018

C2:

11 chia hết cho 2x—1

==> 2x—1 € Ư(11)

==> 2x—1 € { 1;-1;11;-11}

Ta có:

TH1: 2x—1=1

2x=1+1

2x=2

x=2:2

x=1

TH2: 2x—1=—1

2x=-1+1

2x=0

x=0:2

x=0

TH3: 2x—1=11

2x=11+1

2x=12

x=12:2

x=6

TH4: 2x—1=-11

2x=-11+1

2x=—10

x=-10:2

x=—5

Vậy x€{1;0;6;—5}

C3: x+12 chia hết cho x—2

==> x—2+14 chia hết cho x—2

Vì x—2 chia hết cho x—2 

Nên 14 chia hết cho x—2

==> x—2 € Ư(14)

==> x—2 €{ 1;-1;2;-2;7;-7;14;-14}

Ta có:

TH1: x—2=1

x=1+2

x=3

TH2: x—2=-1

x=-1+2

x=1

TH3: x—2=2

x=2+2’

x=4

TH4: x—2=—2

x=—2+2

x=0

TH5: x—2=7 

x=7+ 2

x=9 

TH6:x—2=—7 

x=—7+ 2 

x=—5 

TH7: x—2=14 

x=14+2 

x=16 

TH8: x—2=-14

x=-14+2

x=-12

Vậy x€{3;1;4;0;9;—5;16;-12}