K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

1=3^0

=>M=3^0 +3+3^2+3^3+...+3^119

=>M chia hết cho 3

28 tháng 3 2017

M=1+3+3^2+......+3^117+3^118+3^119

M=3^0+3^1+3^2+......+3^117+3^118+3^119

M có số hạng là:

(119-0):1+1=120(số)

Vì 120 chia hết cho 3 nên ta chia dãy số M thành các nhóm,mỗi nhóm có 3 số hạng

Ta có:M=3^0+3^1+3^2+......+3^117+3^118+3^119

M=(3^0+3^1+3^2)+......+(3^117+3^118+3^119)

M=3^0.(1+3+3^2)+.......+3^117.(1+3+3^2)

M=3^0.13+......+3^117.13

M=13.(3^0+.....+3^117)

=>M chia hết cho 13

28 tháng 3 2017

Đầu bài sai rồi bạn ơi vì tất cả các số sau số 1 đều chia hết cho 3 mà 1 chia 3 dư 1 nên M chia 3 dư 1

9 tháng 7 2015

 M=1+3+32+33+...+3118+3119

=(1+3+32)+(33+34+35)+...+(3117+3118+3119)

=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)

=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)

=13+33.13+...+3117.13

=13.1+33.13+...+3117.13

=13.(1+33+3117)

=> M chia hết cho 13

10 tháng 4 2017

M=1+3+3^2+3^3+^3+...+3^118+3^119

  =(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)

 =13+3^3(1+3+3^2)+...+3^117(1+3+3^2)

 =13+3^3.13+..+3^117.13

 =13(1+3^3+...+3^117) chia hết cho 13

Vậy Mchia hết cho 13

10 tháng 4 2017

ai chơi truy kích thì kết bạn vs mình nha 

rồi khi nào tạo phòng solo đao phong chibi với nhau 1 ván

22 tháng 8 2017

a)M=1+3+3^2+...+3^118+3^119

      =(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)

      =1x(1+3+9)+3^3x(1+3+9)+...+3^117x(1+3+9)

      =1x13+3^3x13+...+3^117x13

      =13x(1+3^3+...+3^117)

Vậy M chia hết cho 13

a)M=1+3+3^2+...+3^118+3^119

     M =(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)

    M  =1x(1+3+9)+3^3x(1+3+9)+...+3^117x(1+3+9)

     M =1x13+3^3x13+...+3^117x13

    M =13x(1+3^3+...+3^117)

Vậy M chia hết cho 13

Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng

16 tháng 4 2016

nhanh lên nhé

21 tháng 10 2017

A = 3 + 3+ 3+ 3+ 3+ ..... +3117 + 3118 + 3119 + 3120

3A = 3+ 3+ 3+ 3+ ..... +3117 + 3118 + 3119 + 3120 + 3121

3A - A = ( 3+ 3+ 3+ 3+ ..... +3117 + 3118 + 3119 + 3120 + 3121 ) - ( 3 + 3+ 3+ 3+ 3+ ..... +3117 + 3118 + 3119 + 3120 )

2A = 3121 - 3

A = ( 3121 - 3 ) : 2 chia hết cho 2

Vậy A chia hết cho 2

25 tháng 10 2018

A = 3 +32+33+34+35+36+...+3117+3118+3119+3120

A = (3+32) + (33+34) + (35+36)+ ...+ (3177+3118) + (3119+3120)

A= 3 . (1+3) + 33(1+3 )+ 3( 1+3 ) +...+3117 ( 1+3 ) + 3119 ( 1+3 )

A=3. 4 + 3. 4 + 3. 4 + ...+ 3119 . 4

A =4. ( 3+3+ 35 + ... + 3119  )  ⋮ 2

( vì trong tích trên có thừa số 4 , mà trong tích nếu có bất kì số nào đó chia hết cho a thì tích đó chia hết cho a . Vậy tích trên có chữ số 4 vì vậy tích đó chia hết cho 2 )

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

24 tháng 12 2016

Nhóm 2 số 1 cặp

M= 1.(1+3) + 3^2.(1+3) + .... + 3^118.(1+3)

M= 1. 4 + 3^2.4+... + 3^118 . 4

M = 4.(1+3^2+...+ 3^118) chia hết cho 4

Vậy M chia hết cho 4

Nhóm 3 số 1 cặp

M= 1.(1+3+3^2) + 3^3.(1+3+3^2) + .... + 3^117.(1+3+3^2)

M= 1.13+ 3^3.13+... + 3^117 . 13

M = 13 . (1+3^3+...+3^117) chia hết cho 13

Vậy M chia hết cho 13

Nhớ k cho mình nếu bạn thấy đúng nhé!

24 tháng 12 2016

 M=1+3+32+33+...+3118+3119

=(1+3+32)+(33+34+35)+...+(3117+3118+3119)

=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)

=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)

=13+33.13+...+3117.13

=13.1+33.13+...+3117.13

=13.(1+33+3117)

=> M chia hết cho 13

Đối với 4 cũng tương tự