So sánh \(\dfrac{x-y}{x+y}\) và \(\dfrac{x^2-y^2}{x^2+y^2}\) với x>y>0
Nguyễn Huy Tú Ace Legona
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)
b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)
c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
\(\frac{\sqrt{2}-1}{\sqrt{2}+2}-\frac{1}{1+\sqrt{2}}+\frac{\sqrt{2}+1}{\sqrt{2}}=\frac{\sqrt{2}-1}{\sqrt{2}+2}-\frac{\sqrt{2}}{\left(1+\sqrt{2}\right)\sqrt{2}}+\frac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}\left(\sqrt{2}+1\right)}=\frac{\sqrt{2}-1}{2+\sqrt{2}}-\frac{\sqrt{2}}{2+\sqrt{2}}+\frac{3+2\sqrt{2}}{2+\sqrt{2}}=\frac{\sqrt{2}-1-\sqrt{2}+3+2\sqrt{2}}{2+\sqrt{2}}=\frac{2+2\sqrt{2}}{2+\sqrt{2}}\) \(b,\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}=\left(\sqrt{x}-2\right)+\frac{10-x}{\sqrt{x}+2}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}=\frac{x-4+10-x}{\sqrt{x}+2}=\frac{6}{\sqrt{x}+2}\)
\(c,\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
Ta có:\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\)
Do x>y>0 =>x2+xy+y2<x2+2xy+y2
=>\(\frac{x^2-y^2}{x^2+xy+y^2}>\frac{x^2-y^2}{x^2+2xy+y^2}\)
=>\(\frac{x^2-y^2}{x^2+xy+y^2}>\frac{x-y}{x+y}\)
Lời giải:
Đặt \(\left ( \frac{x}{y},\frac{y}{z},\frac{z}{x} \right )=(a,b,c)\Rightarrow abc=1\)
Bài toán tương đương với: Cho \(a,b,c>0\) và \(abc=1\). CMR
\(a^2+b^2+c^2\geq a+b+c\)
Thật vậy.
Áp dụng BĐT AM-GM: \(a+b+c\geq 3\sqrt[3]{abc}=3\sqrt[3]{1}=3(1)\)
Theo hệ quả của BĐT Am-Gm:
\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow 3(a^2+b^2+c^2)\geq a^2+b^2+c^2+2(ab+bc+ac)\)
\(\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}\)
Kết hợp với \((1)\Rightarrow a^2+b^2+c^2\geq a+b+c\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=1\Leftrightarrow x=y=z\)
\(\frac{\left(x+y\right)^3}{x^2-y^2}\)
\(\frac{\left(x^2-xy+y^2\right)}{x-y}=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x-y\right)}=\frac{x^3+y^3}{x^2-y^2}\)
Vì x > y > 0 => x^3 + y^3 < ( x+ y)^3
=> \(\frac{x^3+y^3}{x^2+y^2}<\frac{\left(x+y\right)^3}{x^2-y^2}\)
HAy \(\frac{\left(x+y\right)^3}{x^2-y^2}>\frac{x^2-xy+y^2}{x-y}\)
vì x>y>0 nên \(x+y\ne0\).Theo tính chất cơ bản của phân thức,ta có :
\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\dfrac{x^2-y^2}{x^2+2xy+y^2}\left(1\right)\)
Mặt khác,vì x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)
Vậy \(\dfrac{x^2-y^2}{x^2+2xy+y^2}< \dfrac{x^2-y^2}{x^2+y^2}\left(2\right)\) Từ \(\left(1\right),\left(2\right)\) ta suy ra : \(\dfrac{x-y}{x+y}< \dfrac{x^2-y^2}{x^2+y^2}\)
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)
\(\Leftrightarrow a^2y.\left(x+y\right)+b^2x.\left(x+y\right)\ge xy\left(a+b\right)^2\)
\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge a^2xy+2abxy+b^2xy\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2+a^2xy-a^2xy+b^2xy-b^2xy\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)
Dấu bằng xảy ra khi\(\dfrac{a}{x}=\dfrac{b}{y}\)
Xét hiệu:
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}-\dfrac{\left(a+b\right)^2}{x+y}\)
\(=\dfrac{a^2.y\left(x+y\right)}{xy\left(x+y\right)}+\dfrac{b^2x\left(x+y\right)}{xy\left(x+y\right)}-\dfrac{xy\left(a+b\right)^2}{xy\left(x+y\right)}\)
\(=\dfrac{a^2xy+a^2y^2+b^2x^2+b^2xy-a^2xy-2abxy-b^2xy}{xy\left(x+y\right)}\)
\(=\dfrac{a^2y^2-2abxy+b^2x^2}{xy\left(x+y\right)}\)
\(=\dfrac{\left(ay-bx\right)^2}{x^2y+xy^2}\ge0\)
=> BĐT luôn đúng
\(BDT\Leftrightarrow\dfrac{x^4}{x^2y^2}+\dfrac{y^4}{x^2y^2}+\dfrac{4x^2y^2}{x^2y^2}\ge3\left(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\right)\)
\(\Leftrightarrow\dfrac{x^4+y^4-2x^2y^2+6x^2y^2}{x^2y^2}\ge\dfrac{3\left(x^2+y^2\right)}{xy}\)
\(\Leftrightarrow\dfrac{x^4+y^4-2x^2y^2}{x^2y^2}\ge\dfrac{3x^2+3y^2}{xy}-\dfrac{6xy}{xy}\)
\(\Leftrightarrow\dfrac{\left(x^2-y^2\right)^2}{x^2y^2}\ge\dfrac{3\left(x^2-2xy+y^2\right)}{xy}=\dfrac{3\left(x-y\right)^2}{xy}\)
\(\Leftrightarrow\left(x-y\right)^2\left[\dfrac{\left(x+y\right)^2-3xy}{x^2y^2}\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{x^2+y^2-xy}{x^2y^2}\right)\ge0\) (luôn đúng)
Vậy BĐT đã được chứng minh