K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(HC=\sqrt{15^2-12^2}=9\left(cm\right)\)

b: DC=DH+HC=25(cm)

\(BD=\sqrt{12^2+16^2}=20\left(cm\right)\)

Xét ΔDBC có \(DC^2=DB^2+BC^2\)

nên ΔDBC vuông tại B

a: góc ABD=góc BDC

=>góc ABD=góc ADB

=>ΔABD cân tại A

=>AB=AD=17cm

=>BC=17cm

b: Xét tứ giác ABED có

AB//ED

AB=ED

AB=ED

=>ABED là hình thoi

=>góc BEC=góc ADE

=>góc BEC=góc BCE

=>ΔBCE cân tại B

15 tháng 9 2021

ôi bạn ơi bạn viết đề thế này là do bạn sao vậy bạn

Đề sai rồi bạn

26 tháng 7 2016

Tách ra đi bạn

6 tháng 1 2022

thanks

 

10 tháng 8 2021

a,

ABCD là hình thang cân \(=>\angle\left(CAB\right)=\angle\left(DBA\right)\)

=>2 góc ngoài cũng bằng nhau

=>2 tia phân giác 2 góc ngoài cũng tạo thành các góc bằng nhau

\(=>\angle\left(EAB\right)=\angle\left(FBA\right)\)=>ABFE là hình thang cân

b,từ 2 điểm A,B hạ các đường cao AM,BN

 chứng minh được AMNB là h chữ nhật

=>MN=AB=6cm

dễ chứng minh được tam giác ADM=tam giác BCN(ch-cgn)

\(=>DM=CN=\dfrac{1}{2}\left(DC-MN\right)=\dfrac{1}{2}\left(12-6\right)=3cm\)

pytago=>\(BN=\sqrt{BC^2-NC^2}=\sqrt{5^2-3^2}=4cm\)

\(=>SABCD=\dfrac{BN\left(AB+CD\right)}{2}=........\)thay số tính

 

 

 

29 tháng 6 2021

Kẻ \(AE,BF\bot CD\)

Vì \(AE\parallel BF(\bot CD),AB\parallel EF\) (ABCD là hình thang cân)

\(\Rightarrow ABFE\) là hình bình hành có \(\angle AEF=90\Rightarrow ABFE\) là hình chữ nhật

\(\Rightarrow AB=FE\)

Dễ dàng chứng minh được \(DE=CF\left(\Delta ADE=\Delta BFC\right)\)

\(\Rightarrow DE=\dfrac{CD-AB}{2}=\dfrac{7-3}{2}=2\)

\(\Rightarrow AE=\sqrt{AD^2-DE^2}=\sqrt{5^2-2^2}=\sqrt{21}\)

\(\Rightarrow S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right).AE=\dfrac{1}{2}\left(7+3\right).\sqrt{21}=5\sqrt{21}\)