K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2015

Ta có: 2222+4 chia hết cho 7=>2222=-4(mod 7)=>22225555 = (-4)5555 (mod 7)

          5555-4 chia hết cho 7 => 5555=4(mod 7)=>55552222 =42222 (mod 7)

=>22225555 =55552222  = (-4)5555 +42222  (mod 7)

Mà 42222  =(-4)2222 => (-4)5555 +42222 = (-4)2222  + 43333 x 42222 

              =(-4)2222 x 43333 - (-4)2222 = (-4)2222(43333 -1 )=43 -1(mod 7) (1)

Ta lại có: 43 =1(mod 7)=>43 -1=63 chia hết cho 7 =>43 -1=0(mod 7) (2)

Nên (-4)5555 +42222 = 0(mod 7)

Từ (1) và (2) =>22225555 +55552222  chia hết cho 7

21 tháng 1 2017

CM:1/2.3/4.5/6.....99/100<1/10

3 tháng 1 2016

Chtt

3 tháng 1 2016

Đêm ùi mà còn nhờ 1 đống zậy muốn xỉu lun oy

22 tháng 12 2014

11^10-1

=(...1)-1

=(..0) chia hết cho 10

1 tháng 3 2015

ê mấy bn đề bài bảo chứng mik chia hết cho 100 mà

 

14 tháng 1 2017

biết 1890 chia hết cho 7

1945+1 =1946 chia hết cho 7

1946+1890=3836 cũng chia hết cho 7

số mũ =a x a x a x.......

mà bất cứ số nào chia hết cho 7 nhân với bao nhiêu cũng chia hết cho 7 vậy suy ra 18901930+19451975+1 chia hết cho 7

16 tháng 8 2017

bài 4 à bà

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

Bổ sung điều kiện $n$ là số tự nhiên khác $0$

Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)

\(4^{3^{4n+1}}\equiv 0\pmod 4\)

\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)

Vậy $A\vdots 4(*)$

Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$ 

$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$

$3^{4n+1}=3.81^n\equiv 3\pmod {10}$

$\Rightarrow 3^{4n+1}=10t+3$

$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$

Do đó:

$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$

Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$

Ta có đpcm.

 

Bạn có thể gõ lại công thức rõ hơn được không?