cho tam giác abc nhọn có góc ACB=50 độ, h là trực tâm tam giác ABC. khẳng định nào dưới đây sai:
A. góc AHB=130 độ B.góc HBC=40 độ C. góc HAC=BHC D. góc A> góc B>góc C ( bạn nhớ giải thích dùm mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì góc A nhọn nên chắc chắn tam giác ABC không thể vuông cân
=> Loại
b: Gọi giao điểm của BH và AC là K
=> BK\(\perp\)AC tại K
Ta có: ΔABK vuông tại K
nên \(\widehat{ABK}+\widehat{BAK}=90^0\)
hay \(\widehat{BAC}=60^0\)
Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)
nên ΔABC đều
a) M đối xứng H qua BC
-> BC là đường trung trực MH
-> CH = CM ; BH = BM
Xét tam giác BHC và tam giác BMC:
CH = CM (cmt)
BC : chung
BH = BM (cmt)
-> Tam giác BHC = tam giác BMC (c-c-c)
b) Xét tứ giác ADHG:
\(\widehat{A}+\widehat{AGH}+\widehat{ADH}+\widehat{GHD}=360^o\)
\(\rightarrow\widehat{GHD}=360^o-\widehat{A}-\widehat{AGH}-\widehat{ADH}\)
\(\rightarrow\widehat{GHD}=360^o-60^o-90^o-90^o=120^o\)
\(\rightarrow\widehat{GHD}=\widehat{BHC}=120^o\)( đối đỉnh )
Mà \(\widehat{BHC}=\widehat{BMC}\)( tam giác BHC = tam giác BMC )
\(\rightarrow\widehat{BMC}=120^o\)
a:Xét tứ giác BHKC có \(\widehat{BHC}=\widehat{BKC}=90^0\)
nên BHKC là tứ giác nội tiếp
b: Xét đường tròn ngoại tiếp tứ giác BHKC có
\(\widehat{BHC}\) là góc nội tiếp chắn cung BC
\(\widehat{HKB}\) là góc nội tiếp chắn cung HB
mà BC>HB
nên \(\widehat{BHC}>\widehat{HKB}\)