CMR : Nếu n \(⋮\) 3 thì A(n) = 32n + 3n + 1 \(⋮\) 13 Với \(\forall\) n \(\in\) N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(n^2+3n+1\right)-1=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Bn chứng minh biểu thức trên chia hết cho 3 và 2 nhé!
Sau đó lí luận là (3,2) = 1 và 3.23=24 nên biểu thức chia hết cho 24
P/s: ( Nếu có sai sót mong thông cảm =))
a, Với n = 1 ta có 3 ⋮ 3.
Giả sử n = k ≥ 1 , ta có : k3 + 2k ⋮ 3 ( GT qui nạp).
Ta đi chứng minh : n = k + 1 cũng đúng:
(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2
= (k^3+2k) + 3(k^2+k+1)
Ta có : + (k^3+2k) ⋮ 3 ( theo gt trên)
+ 3(k^2+k+1) hiển nhiên chia hết cho 3
Vậy mệnh đề luôn chia hết cho 3.
b, Với n = 1 ta có 12 ⋮ 6.
Giả sử n = k ≥ 1 , ta có: 13k -1 ⋮ 6
Ta đi chứng minh : n = k+1 cũng đúng:
=> 13k.13 - 1 = 13(13k - 1) + 12.
Có: - 13(13k - 1) ⋮ 6 ( theo gt)
- 12⋮6 ( hiển nhiên)
> Vậy mệnh đề luôn đúng.
chỗ mk ghi chia hết và không chia hết, pn ghi kí hiệu nhé, cùng chia hết thì ghi chữ; pn dùng ngoặc nhọn chỗ do đó và mà nhé.
a) A= n2 + 3n + 18
= n2 + 5n - 2n - 10 + 28
= n(n + 5) - 2(n + 5) + 28
= (n + 5)(n - 2) + 28
Xét (n + 5) và (n - 2)
(n + 5) - (n - 2) = 7 chia hết cho 7
=> (n + 5), (n - 2) cùng chia hết cho 11
Do đó: (n + 5).(n - 2) chia hết cho 7.7= 49
Mà: 28 chia hết cho 7
=> (n + 5)(n - 2) + 28 không chia hết cho 49
b) B = n2 + 3n - 6
= n2 + 7n - 4n - 28 + 22
= n(n + 7) - 4(n + 7) + 22
= (n + 7)(n - 4) + 22
Xét (n + 7) và (n - 4)
(n + 7) - (n - 4)= 11 chia hết cho 11
=> (n + 7) và (n - 4) cùng chia hết cho 11
Do đó: (n + 7).(n - 4) chia hết cho 11.11 = 121
Mà: 22 không chia hết hết cho 121
=> (n + 7)(n - 4) + 22 không chia hết cho 121
Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm.
\(A=n^3+3n^2+5n+3\)
\(=n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n+3\right)\)
\(=\left(n+1\right)\left[n\left(n+2\right)+3\right]\)
\(=n\left(n+1\right)\left(n+2\right)+3\left(n+1\right)\)
Do n ; n + 1 ; n + 2 là 3 số nguyên dương liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)
\(\Rightarrow...+3\left(n+1\right)⋮3\)
hay \(A⋮3\left(đpcm\right)\)
B nguyên tố khác 3 nên b=3k+1 hoặc b=3k+2
B=3k+1 thì A =3n+6027k+2010 chia hét cho 3
B=3k+2 thì A=
Gì mà chia hết cho 13 ;
\(3^6+3^3+1=757\) không chia hết cho 13
\(3^{12}+3^6+1\) không chia hết cho 13;
Đề sai oy
Không sai