K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

Tham khảo:

Câu hỏi của Trần Ngọc Quốc Nam - Toán lớp 6 - Học toán với OnlineMath (câu G)

~ Học tốt!!! ~

14 tháng 7 2017

Giải:

\(8^8+2^{20}⋮17.\)

\(=\left(2^3\right)^8+2^{20}.\)

\(=2^{24}+2^{20}.\)

\(=2^{20}.2^4+2^{20}.\)

\(=2^{20}.2^4+2^{20}.1.\)

\(=2^{20}\left(2^4+1\right).\)

\(=2^{20}\left(16+1\right).\)

\(=2^{20}.17⋮17.\)

\(\Rightarrowđpcm.\)

~ Học tốt!!! ~

\(8^8+2^{20}\)

\(=\left(2^3\right)^8+2^{20}\)

\(=2^{24}+2^{20}\)

\(=2^{20}\left(2^4+1\right)\)

\(=2^{20}\cdot17⋮17\)

1 tháng 9 2023

Bài 1

a, cm : A = 165 + 215 ⋮ 3

    A = 165 + 215

   A = (24)5 +  215

  A  = 220 + 215

 A  =  215.(25 + 1)

 A = 215. 33 ⋮ 3 (đpcm)

b,cm : B = 88 + 220 ⋮ 17

    B = (23)8 + 220 

    B =  216 + 220

    B = 216.(1 + 24)

    B = 216. 17 ⋮ 17 (đpcm)

 

 

  

1 tháng 9 2023

c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1

C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)

C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)

C = 1 + 42+...+ 22016.42

C = 1 + 42.(20+...+22016)

42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm

          

23 tháng 10 2017

a, Ta có  16 5 + 2 15 = 2 4 5 + 2 15 = 2 20 + 2 15 =  2 15 2 5 + 1 = 2 15 . 33  chia hết cho 33

b, Ta có:  8 8 + 4 10 = 2 3 8 + 2 2 10 = 2 24 + 2 20 =  2 20 2 4 + 1 = 2 20 . 17  chia hết cho 17

20 tháng 10 2018

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

21 tháng 6 2018

14 tháng 11 2017

5 tháng 1 2016

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60