K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

Điều kiện \(x\ge\dfrac{3}{2}\). Khi đó pt đã cho tương đương với:

\(\dfrac{\left(\sqrt{2x-3}-\sqrt{x}\right)\left(\sqrt{2x-3}+\sqrt{x}\right)}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\) hoặc x = 3 ( thỏa mãn ) hoặc \(2-\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=0\left(1\right)\)

Từ ĐK \(x\ge\dfrac{3}{2}>1\Rightarrow2-\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}>0\)

Do đó PT ( 1 ) vô nghiệm.

Vậy PT đã cho có nghiệm duy nhất x = 3.

12 tháng 3 2021

ĐKXĐ: \(-3\le x\le6\)

Trước hết ta chứng minh:

\(\sqrt{x+3}+\sqrt{6-x}\le3\sqrt{2}\)

Mặt khác điều này hiển nhiên do bất đẳng thức Bunyakovski: 

\(VT\le\sqrt{2\left[\left(x+3\right)+\left(6-x\right)\right]}=3\sqrt{2}\)

Đẳng thức xảy ra khi \(x+3=6-x\Leftrightarrow x=\dfrac{3}{2}\)

Mặt khác theo AM-GM: 

\(6\sqrt{2x+6}-2x-13=2\sqrt{9\left(2x+6\right)}-2x-13\le\left[9+\left(2x+6\right)\right]-2x-13=2\)

Đẳng thức xảy ra khi $x=\dfrac{3}{2}.$

Từ đây thu được \(VT\le VP.\)

Đẳng thức xảy ra khi $x=\dfrac{3}{2}.$

Vậy \(S=\left\{\dfrac{3}{2}\right\}\)

30 tháng 11 2021

ĐKXĐ:\(\left\{{}\begin{matrix}2x-3\ge0\\x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x\ge0\end{matrix}\right.\Rightarrow x\ge\dfrac{3}{2}\)

\(\sqrt{2x-3}-\sqrt{x}=2x-6\\ \Leftrightarrow\dfrac{2x-3-x}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\\ \Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}-2\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}-2=0\end{matrix}\right.\)

Với \(x-3=0\Rightarrow x=3\left(tm\right)\)

 \(Với\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}-2=0\\ \Leftrightarrow\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\\ \Leftrightarrow2\sqrt{2x-3}+2\sqrt{x}=1\left(đến.đây.bạn.cm.nó,vô.nghiệm.nhé\right)\)

28 tháng 11 2021

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)

NV
8 tháng 4 2021

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
8 tháng 4 2021

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)

NV
5 tháng 5 2021

ĐKXĐ: \(0\le x\le5\)

Pt tương đương:

\(\sqrt{x+3}+4\sqrt{x}+\sqrt{5-x}=2x+6\)

Ta có:

\(VT=\dfrac{1}{2}.2.\sqrt{x+3}+4.1.\sqrt{x}+\dfrac{1}{2}.2.\sqrt{5-x}\)

\(VT\le\dfrac{1}{4}\left(4+x+3\right)+2\left(1+x\right)+\dfrac{1}{4}\left(4+5-x\right)\)

\(\Rightarrow VT\le2x+6=VP\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x}=1\\\sqrt{5-x}=2\end{matrix}\right.\) \(\Leftrightarrow x=1\)

9 tháng 11 2022

Từ bước trên xuống bước dưới áp dụng công thức nào vậy thầy - Nhờ thầy chỉ rõ hơn.

Trân trọng!

14 tháng 12 2020

a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))

Vì hai vế ko âm, bp 2 vế ta được:

2x2 - 3 = 4x - 3

\(\Leftrightarrow\) 2x2 = 4x

\(\Leftrightarrow\) x2 = 2x

\(\Leftrightarrow\) x2 - 2x = 0

\(\Leftrightarrow\) x(x - 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy S = {2}

b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)

Vì hai vế ko âm, bp 2 vế ta được:

2x - 1 = x - 1

\(\Leftrightarrow\) x = 0 (KTM)

Vậy x = \(\varnothing\)

c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x - 6 = x - 3

\(\Leftrightarrow\) x2 - 2x - 3 = 0

\(\Leftrightarrow\) x2 - 3x + x - 3 = 0

\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 1) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)

Vậy S = {3}

d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x = 3x - 5

\(\Leftrightarrow\) x2 - 4x + 5 = 0

\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0

\(\Leftrightarrow\) (x - 2)2 + 1 = 0

Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)

\(\Rightarrow\) Pt vô nghiệm

Vậy S = \(\varnothing\)

Chúc bn học tốt!

14 tháng 12 2020

Nguyễn Lê Phước Thịnh nhờ anh xíu ạ

20 tháng 3 2016

Điều kiện với \(x\ge\frac{3}{2}.\) Khi đó PT đã cho tương đương với:

\(\frac{\left(\sqrt{2x-3}-\sqrt{x}\right)\left(\sqrt{2x-3}+\sqrt{x}\right)}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\frac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\) hoặc x = 3 ( thỏa mãn ) hoặc

\(2-\frac{1}{\sqrt{2x-3}+\sqrt{x}}=0\) ( 1 )

Từ điều kiện \(x\ge\frac{3}{2}\) suy ra \(2-\frac{1}{\sqrt{2x-3}+\sqrt{x}}\ge0\)

Do đó PT 1 vô nghiệm.

Vậy PT đã cho có nghiệm duy nhất x = 3.

@@


 

20 tháng 3 2016

s giống ik cách của tui v =="