So sánh 2 số:
\(A=\dfrac{1}{2006}\) và \(B=\dfrac{1}{2008}+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}\right)^2+...+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}+...+\dfrac{1}{2008^{2007}}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:\left\{{}\begin{matrix}x-2008\ge0\\2008-x\ge0\\x-2007>0\end{matrix}\right.\Leftrightarrow x=2008\)
Vậy PT có nghiệm \(x=2008\)
Ta có: \(A=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\)
\(=1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)\)
\(=\dfrac{2009}{1}+\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2008}\)
\(=2009\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2008}\right)\)
\(=\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1\)
\(=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2008}+\dfrac{2009}{2009}\)
\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2009}\right)\)
\(B=1+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{1}{2008}+1\right)=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\Rightarrow\frac{A}{B}=\frac{1}{2009}\)
\(A=\dfrac{2008^{2008}+1}{2008^{2009}+1}\)
\(2008\cdot A=\dfrac{2008^{2009}+2008}{2008^{2009}+1}\)
\(=\dfrac{2008^{2009}+1+2007}{2008^{2009}+1}\)
\(=1+\dfrac{2007}{2008^{2009}+1}\)
\(B=\dfrac{2008^{2007}+1}{2008^{2008}+1}\)
\(2008\cdot B=\dfrac{2008^{2008}+2008}{2008^{2008}+1}\)
\(=\dfrac{2008^{2008}+1+2007}{2008^{2008}+1}\)
\(=1+\dfrac{2007}{2008^{2008}+1}\)
Ta có: \(2008^{2009}+1>2008^{2008}+1\)
\(\Rightarrow\dfrac{1}{2008^{2009}+1}< \dfrac{1}{2008^{2008}+1}\)
\(\Rightarrow\dfrac{2007}{2008^{2009}+1}< \dfrac{2007}{2008^{2008}+1}\)
\(\Rightarrow1+\dfrac{2007}{2008^{2009}+1}< 1+\dfrac{2007}{2008^{2008}+1}\)
hay \(A < B\)
#\(Toru\)
\(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\)
\(B=1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)\)
\(B=\dfrac{2009}{2009}+\dfrac{2009}{2}+\dfrac{2009}{3}+..+\dfrac{2009}{2007}+\dfrac{2009}{2008}\)
\(B=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}\)
\(\dfrac{A}{B}=\dfrac{1}{2009}\)
Ta có :
\(A=\dfrac{\dfrac{2008}{1}+\dfrac{2007}{2}+....................+\dfrac{2}{2007}+\dfrac{1}{2008}}{\dfrac{1}{2}+\dfrac{1}{3}+....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{\left(\dfrac{2007}{2}+1\right)+.....+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{\dfrac{2009}{2}+...................+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}}{\dfrac{1}{2}+\dfrac{1}{3}+.....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{2009\left(\dfrac{1}{2}+..........................+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+............................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=2009\)
1)\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2008+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2009}{2009}+\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}\)
\(\dfrac{A}{B}=\dfrac{1}{2009}\)
2) \(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)
\(A=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)
\(A=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(A=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)
Hình như thiếu mũ 2007 -.- Sửa luôn nhóe :)
Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.
\(S_n=\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^n}\)
Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)
\(=\left(1+\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}\right)-\left(\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}+\dfrac{1}{a^n}\right)\)\(=1-\dfrac{1}{a^n}< 1\Rightarrow S_n< \dfrac{1}{a-1}\left(1\right)\)
Áp dụng BĐT ( 1 ) cho a = 2008 và mọi n = 2,3, ..., 2004 ta được:
\(B=\dfrac{1}{2008}+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}\right)^2+...+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}+...+\dfrac{1}{2008^{2007}}\right)^{2007}< \dfrac{1}{2007}+\left(\dfrac{1}{2007}\right)^2+...+\left(\dfrac{1}{2007}\right)^{2007}\left(2\right)\)
Lại áp dụng BĐT ( 1 ) cho a = 2007 và n = 2007, ta được:
\(\dfrac{1}{2007}+\dfrac{1}{2007^2}+...+\dfrac{1}{2007^{2007}}< \dfrac{1}{2006}=A\left(3\right)\)
Từ ( 2 ) và ( 3 ) => B < A.
Thiệt ta là tui chép sách