K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

Giả sử a; b; c lần lượt là các cạnh của tam giác ABC ứng với 3 đường cao h= 3,6; h= 4,5; hc = 6 (a = BC; b = AC; c = AB)

Ta có a.h= b.h= c.hc (cùng bằng 2.SABC)

=> 3,6.a = 4,5.b = 6.c => 36a = 45b = 60c => \(\frac{36a}{180}=\frac{45b}{180}=\frac{60c}{180}\) =>  \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\)

Đặt \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=k\) ( k khác 0) => a = 5k; b = 4k ; c = 3k

Nhận xét: (4k)2 + (3k)= (5k)=> b+ c= a => Tam giác ABC vuông tại A

A B C H

Áp dụng hệ thức lượng trong tam giác vuông ABC có: AH.BC = AB . AC => 3,6.5k = 3k.4k => 12k2 = 18k => k = 18/12 = 1,5

=> BC = 5k = 5.1,5 = 7,5 

=> S(ABC) = AH.BC /2 = 3,6.7,5: 2 = 13,5

a: ha=9; hb=12; hc=16

=>hc*9=ha*16=hb*12

=>hc/16=ha/9=hb/12

=>Haitam giác này đồng dạng 

b: ha=4; hb=5; hc=6

=>ha*6=24; hb*5=25; ha*4=24

=>Hai tam giác này ko đồng dạng

1 tháng 4 2016

Đáp án là 5070 cm2 anh ạ 

Ai ủng hộ thì k cho nha !

8 tháng 5 2016

hình như dựa vào tính chất dãy tỉ số bằng nhau ak pn. mk cx chỉ nhớ z thui chứ hk chắc cko lém :)

26 tháng 2 2017

Rảnh

12 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a. Xét hai tam giác BNA và CLA, ta có:

∠ BNA = CLA =  90 °

góc A chung

Suy ra ∆ BNA đồng dạng  ∆ CLA (g.g)

Suy ra: AL/AN = AC/AB ⇒ AL/AC = AN/AB

Xét hai tam giác ABC và ANL, ta có:

AL/AC = AN/AB

góc A chung

Suy ra ∆ ABC đồng dạng  ∆ ANL (c.g.c)

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:

a/ Tứ giác $AEHF$ có 3 góc vuông: $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.

$\Rightarrow AH=EF$

b/ $HF=AE$ (do $AEHF$ là hcn) 

Xét tam giác $AEH$ và $AHB$ có:

$\widehat{A}$ chung

$\widehat{AEH}=\widehat{AHB}=90^0$

$\Rightarrow \triangle AEH\sim \triangle AHB$ (g.g)

$\Rightarrow \frac{AE}{AH}=\frac{AH}{AB}$

$\Rightarrow AE=\frac{AH^2}{AB}=\frac{AB^2-BH^2}{AB}=\frac{6^2-3,6^2}{6}=3,84$ (cm)

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Hình vẽ:

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CED=góc CAD

góc CDE=góc CAE

mà góc CAD=góc CAE(=góc CBD)

nên góc CED=góc CDE

=>CD=CE