BT3: Tìm x, biết
21) \(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Rightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)
\(\Rightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Rightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)
\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Rightarrow x=305\)
vậy \(x=305\)
Ta có: \(\dfrac{1}{3.3}\left(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\)\(=\dfrac{101}{1540}\)
\(\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}=\dfrac{1}{308}\)
\(\Rightarrow x+3=308\Rightarrow x=305\)
Ta có:
\(\dfrac{1}{5\times8}+\dfrac{1}{8\times11}+\dfrac{1}{11\times14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\dfrac{1}{3}\left(\dfrac{3}{5\times8}+\dfrac{3}{8\times11}+\dfrac{3}{11\times14}+...+\dfrac{1}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)\(\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{101}{1540}:\dfrac{1}{3}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{308}\)
=> x + 3 = 308
x = 308 - 3
x = 305
Vậy x = 305
Ta có : \(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+....+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)
= \(\dfrac{1}{3}\) . ( \(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+....-\dfrac{1}{x+3}\)
=\(\dfrac{1}{3}\). ( \(\dfrac{1}{5}-\dfrac{1}{x+3}\)) = \(\dfrac{101}{1540}\)
=>\(\dfrac{1}{5}-\dfrac{1}{x+3}\) = \(\dfrac{303}{1540}\)
=> \(\dfrac{1}{x+3}\)= \(\dfrac{5}{1540}=\dfrac{1}{308}\)
=> x+3 = 308
=> x= 305
Vậy x= 305
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\) ( x # 0 ; x# - 3)
⇔ \(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)
⇔ \(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
⇔ \(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
⇔ \(\dfrac{1}{x+3}=\dfrac{1}{308}\)
⇔ \(x+3=308\)
⇔ \(x=305\left(TM\right)\)
Vậy ,...
Ta có : 1/ 5.8 + 1/ 8.11 + 1/ 11.14 + ... + 1/ x.(x+3) = 101/1540 .
⇒ 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/x - 1/ x+3 = 101/1540 .
⇒ 1/5 - 1/ x+3 = 101/1540 .
⇒ 1/5 - 101/1540 = 1/ x+3 .
⇒ 308/1540 - 101/1540 = 1/ x+3 .
⇒ 1/ x+3 = 207/1540 .
⇒ 1540 = ( x + 3 ).207 .
⇒ 1540 = 207x + 621 .
⇒ 1540 - 621 = 207x .
⇒ 207x = 1119 .
⇒ x = 1119 : 207 .
⇒ Không có giá trị của x ( vì x ∈ Z ) .
a)
<=> (1/3)[3/(5.8) + 3/(8.11) + ... + 3/[x(x+3)] = 101/1540
<=> (1/3)[(1/5 - 1/8) + (1/8 - 1/11) + ... + 1/x - 1/(x+3)] = 101/1540
<=> (1/3)[1/5 - 1/(x+3)] = 101/1540
<=> 1/5 - 1/(x+3) = 303/1540
<=> 1/(x+3) = 1/5 - 303/1540 = 5/1540 = 1/308
<=> x = 305
b)
a)\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)
\(\dfrac{1.3}{5.8}+\dfrac{1.3}{8.11}+\dfrac{1.3}{11.14}+...+\dfrac{1.3}{x.\left(x+3\right)}=\dfrac{101.3}{1540}\)
\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{308}\)
308.1 = (x + 3).1
308 = x + 3
x = 308 - 3
x = 305
a/ \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^9}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+......+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{10}}\)
b/ \(\dfrac{1}{5.8}+\dfrac{1}{8.11}+.......+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow3\left(\dfrac{1}{5.8}+\dfrac{1}{8.11}+......+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{101}{1540}.3\)
\(\Leftrightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+......+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+.....+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)
\(\Leftrightarrow x+3=308\)
\(\Leftrightarrow x=305\)
Vậy ..
c/ \(1+\dfrac{1}{3}+\dfrac{1}{6}+........+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{2007}{2009}\)
\(\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{6}+.......+\dfrac{1}{x\left(x+1\right):2}\right)=\dfrac{4016}{2009}.\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+......+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)
\(\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2009}\)
\(\Leftrightarrow x+1=2009\)
\(\Leftrightarrow x=2008\)
Vậy ..
bài 1:
A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
ta thấy 2A=\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^9}\)
=>2A-A=\(1-\dfrac{1}{2^{10}}=\dfrac{1023}{1024}\)
Ta có: \(\dfrac{k}{x.\left(x+k\right)}=\dfrac{x+k-x}{x.\left(x+k\right)}=\dfrac{1}{x}-\dfrac{1}{x+k}\)
nên áp dụng ta có:
\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\)
\(=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\)
\(=\dfrac{1}{5}-\dfrac{1}{x+3}\)
Nên $\dfrac{1}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\right)=\dfrac{1}{3}.(\dfrac{1}{5}-\dfrac{1}{x+3})$
Đến đây là làm được rồi nha
\(x\) \((\)\(\dfrac{3}{2.5}\) \(+
\) \(\dfrac{3}{5.8}\) \(+\) \(\dfrac{3}{8.11}\) \(+\) \(\dfrac{3}{11.14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) \((\)\(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{5}\) \(+\) \(\dfrac{1}{5}\) \(-\) \(\dfrac{1}{8}\) \(+\) \(\dfrac{1}{8}\) \(-\) \(\dfrac{1}{11}\) \(+\) \(\dfrac{1}{11}\) \(-\) \(\dfrac{1}{14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) \((\)\(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) x \(\dfrac{3}{7}\) \(=\) \(\dfrac{1}{21}\)
\(x\) \(=\) \(\dfrac{1}{21}\) \(:\) \(\dfrac{3}{7}\)
\(x\) \(=\) \(\dfrac{1}{9}\)
\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)\(\Rightarrow x+3=308\Rightarrow x=305\)