Chứng minh các biểu thức sau không phụ thuộc x :
a,\(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
b,\(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\)
Vậy.....
Ta có: \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=29\)
Lời giải
a)
\(2(x^3+y^3)-3(x^2+y^2)=2(x+y)(x^2-xy+y^2)-3(x^2+y^2)\)
\(=2(x^2-xy+y^2)-3(x^2+y^2)\)
\(=-x^2-y^2-2xy=-(x^2+2xy+y^2)=-(x+y)^2=-1\)
b) \(\frac{(x+5)^2+(x-5)^2}{x^2+25}=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\frac{2(x^2+25)}{x^2+25}=2\)
c) \(\frac{(2x+5)^2+(5x-2)^2}{x^2+1}=\frac{(4x^2+25+20x)+(25x^2+4-20x)}{x^2+1}\)
\(=\frac{29x^2+29}{x^2+1}=\frac{29(x^2+1)}{x^2+1}=29\)
Vậy các biểu thức đã cho có giá trị không phụ thuộc vào $x,y$
Bài 2:
a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)
b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)
\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)
\(=x^4-22x^3+108x^2-45x\)
c: \(=12x^5-18x^4+30x^3-24x^2\)
d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)
\(a,\frac{x^2+2.x.5+5^2+x^2-2.x.5+5^2}{x^2+25}\)
\(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)
Vậy giá trị biểu thức không phụ thuộc vào x
\(b,\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\frac{29\left(x^2+1\right)}{x^2+1}=29\)
Vậy gt biểu thức không phụ thuộc vào x
a) \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)
\(\Rightarrow\)đpcm
b) \(\frac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\frac{29\left(x^2+1\right)}{x^2+1}=29\)
\(\Rightarrow\)đpcm
a: \(=x^2-2x-3x^2+5x-4+2x^2-3x+7=3\)
b: \(=2x^3-4x^2+x-1-5+x^2-2x^3+3x^2-x=4\)
c: \(=1-x-\dfrac{3}{5}x^2-x^4+2x+6+0.6x^2+x^4-x=7\)
a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)
\(=2-6xy-3+6xy=-1\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)
b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)
a, \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\forall x\)
\(\Rightarrowđpcm\)
b, \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\forall x\)
\(\Rightarrowđpcm\)
thank you : <3