Tìm x \(\in\)N biết :
a) 3x + 3x + 1 + 3x + 2 + 3x + 3 = 29160
b) (2x - 19)2019= (2x - 19)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`\color{grey}\text{#071931}`
`(4 + 2x) * (9 - 3x) = 0`
TH1: `4 + 2x = 0 => 2x = -4 => x = -2`
TH2: `9 - 3x = 0 => 3x = 9 => x = 3`
Vậy, `x \in {-2; 3}`
____
`(3x - 19)^3 = 125`
`=> (3x - 19)^3 = 5^3`
`=> 3x - 19 = 5`
`=> 3x = 24`
`=> x = 8`
Vậy, `x = 8.`
1) |2x-1|=-19-x<=> \(\left[\begin{array}{nghiempt}2x-1=-19-x\\2x-1=19+x\end{array}\right.\)=> x=-6 hoặc x=20
2) |4-3x|=2x-10<=>\(\left[\begin{array}{nghiempt}4-3x=2x-10\\4-3x=10-2x\end{array}\right.\)=> x= 14/6 hoặc x=-6
3) |x|=3+2x<=> \(\left[\begin{array}{nghiempt}x=-3-2x\\x=3+2x\end{array}\right.\)=> x=-1 hoặc x=-3
1) - Nếu 2x - 1 < 0 thì -2x + 1 = -19 - x => -x = -20 => x = 20
- Nếu 2x - 1 > 0 thì 2x - 1 = -19 - x => 3x = -18 => x = -6
2) - Nếu 4 - 3x < 0 thì -4 + 3x = 2x - 10 => 6 = -x => x = -6
- Nếu 4 - 3x > 0 thì 4 - 3x = 2x - 10 => 14 = 5x => x = \(\frac{14}{5}\)
3) - Nếu x < 0 thì -x = 3 + 2x => -3x = 3 => x = -1
- Nếu x > 0 thì x = 3 + 2x => -x = 3 => x = -3
1.
\(\left|2x-1\right|=-19-x\)
\(2x-1=\pm\left(-19-x\right)\)
TH1:
\(2x-1=-19-x\)
\(2x+x=-19-1\)
\(3x=-20\)
\(x=-\frac{20}{3}\)
TH2:
\(2x-1=19+x\)
\(2x-x=19-1\)
\(x=18\)
Vậy x = -20/3 hoặc x = 18
2.
\(\left|4-3x\right|=2x-10\)
\(4-3x=\pm\left(2x-10\right)\)
TH1:
\(4-3x=2x-10\)
\(-3x-2x=-10-4\)
\(-5x=-14\)
\(x=\frac{14}{5}\)
TH2:
\(4-3x=-2x+10\)
\(-3x+2x=10-4\)
\(x=-6\)
Vậy x = 14/5 hoặc x = -6
3.
\(\left|x\right|=3+2x\)
\(x=\pm\left(3+2x\right)\)
TH1:
\(x=3+2x\)
\(x-2x=3\)
\(x=-3\)
TH2:
\(x=-3-2x\)
\(x+2x=-3\)
\(3x=-3\)
\(x=-1\)
1) \(\left|2x-1\right|=-19-x\)
\(=>\orbr{\begin{cases}-19-x=2x-1\\-19-x=-\left(2x-1\right)\end{cases}=>\orbr{\begin{cases}-19+1=2x+x\\-19-x=-2x+1\end{cases}}}\)
\(=>\orbr{\begin{cases}-18=3x\\-x+2x=1+19\end{cases}=>\orbr{\begin{cases}x=-6\\x=20\end{cases}}}\)
2) \(\left|4-3x\right|=2x-10\)
\(=>\orbr{\begin{cases}2x-10=4-3x\\2x-10=-\left(4-3x\right)\end{cases}=>\orbr{\begin{cases}2x+3x=4+10\\2x-10=-4+3x\end{cases}}}\)
\(=>\orbr{\begin{cases}5x=14\\-10+4=3x-2x\end{cases}=>\orbr{\begin{cases}x=\frac{14}{5}\\x=-6\end{cases}}}\)
3) \(\left|x\right|=3+2x\)
\(=>\orbr{\begin{cases}3+2x=x\\3+2x=-x\end{cases}=>\orbr{\begin{cases}2x-x=-3\\2x+x=-3\end{cases}}}\)
\(=>\orbr{\begin{cases}x=-3\\3x=-3\end{cases}=>\orbr{\begin{cases}x=-3\\x=-1\end{cases}}}\)
Ủng hộ mk nha ^_-
a) \(PT\Leftrightarrow3x-2x=2-3\Leftrightarrow x=-1\)
Vậy: \(S=\left\{-1\right\}\)
b) \(PT\Leftrightarrow-2x+3x=-7+22\Leftrightarrow x=15\)
Vậy: \(S=\left\{15\right\}\)
c) \(PT\Leftrightarrow8x-5x=3+12\Leftrightarrow3x=15\Leftrightarrow x=5\)
Vậy: \(S=\left\{5\right\}\)
d) \(PT\Leftrightarrow x+4x-2x=12+25-1\Leftrightarrow3x=36\Leftrightarrow x=12\)
Vậy: \(S=\left\{12\right\}\)
e) \(PT\Leftrightarrow x+2x+3x-3x=19+5\Leftrightarrow3x=24\Leftrightarrow x=8\)
Vậy: \(S=\left\{8\right\}\)
a)3x-2=2x-3
=>x=-1
b)7-2x=22-3x
=>x=15
c)8x-3=5x+12
=>3x=15
=>x=5
d)x-12+4x=25+2x-1
=>3x=12
=>x=4
e)x+2x+3x-19=3x+5
=>3x=24
=>x=8
a: \(\Leftrightarrow x^2-4-4x^2-4x-1-2x+3x^2=0\)
=>-6x-5=0
=>-6x=5
hay x=-5/6
b: \(\Leftrightarrow2x^3+8x^2+8x-8x^2-2x^3+16=0\)
=>8x+16=0
hay x=-2
c: \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1-x^3-3x^2-3x-1=0\)
=>9x-10=0
hay x=10/9
d: \(\Leftrightarrow10x-15-20x+28=19-2x^2-4x-2\)
\(\Leftrightarrow-10x+13+2x^2+4x-17=0\)
\(\Leftrightarrow2x^2-6x-4=0\)
\(\Leftrightarrow x^2-3x-2=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=9+8=17>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)
3x + 3x + 1 + 3x + 2 + 3x + 3 = 29 160
=> 3x . ( 1 + 3 + 32 + 33 ) = 29 160
=> 3x . 40 = 29 160
=> 3x = 729
=> 3x = 36
=> x = 6
(2x - 19)2019= (2x - 19)3
=> ( 2x - 19 )2019 - ( 2x - 19 )3 = 0
=> ( 2x - 19 )3 . [ ( 2x - 19 )2016 - 1 ] = 0
\(\Rightarrow\orbr{\begin{cases}\left(2x-19\right)^3=0\\\left(2x-19\right)^{2016}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-19=0\\\left(2x-19\right)^{2016}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=19\\2x-19\in\left\{1;-1\right\}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{19}{2}\\2x\in\left\{20;18\right\}\Rightarrow x∈\left\{10;9\right\}\end{cases}}\)