K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow m^2x-x=-6m-6\)

\(\Leftrightarrow x\left(m^2-1\right)=-6\left(m+1\right)\)

Để phương trình vô nghiệm thì m-1=0

hay m=1

Để phương trình có vô số nghiệm thì m+1=0

hay m=-1

Để phương trình có nghiệm duy nhất thì (m-1)(m+1)<>0

hay \(m\notin\left\{1;-1\right\}\)

b: \(m\left(x-2\right)-m^2=x-3\)

\(\Leftrightarrow mx-2m-m^2-x+3=0\)

\(\Leftrightarrow x\left(m-1\right)=m^2+2m-3\)

\(\Leftrightarrow x\left(m-1\right)=\left(m-1\right)\left(m+3\right)\)

Để phương trình có vô số nghiệm thì m-1=0

hay m=1

Để phương trình có nghiệm thì m-1<>0

hay m<>1

c: \(\left(m+4\right)x-8=2x+3\)

=>(m+6)x=11

Để phương trình vô nghiệm thì m+6=0

hay m=-6

Để phương trình có nghiệm duy nhất thì m+6<>0

hay m<>-6

16 tháng 2 2023

Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.

30 tháng 12 2023

a: \(4x-2=m\left(mx-1\right)\)(1)

=>\(m^2x-m=4x-2\)

=>\(x\left(m^2-4\right)=m-2\)

=>x(m-2)(m+2)=m-2

TH1: m=2

Phương trình (1) sẽ trở thành \(x\left(2-2\right)\left(2+2\right)=2-2\)

=>0x=0(luôn đúng)

TH2: m=-2

Phương trình (1) sẽ trở thành: \(x\left(-2-2\right)\left(-2+2\right)=-2-2\)

=>0x=-4

=>\(x\in\varnothing\)

TH3: \(m\notin\left\{2;-2\right\}\)

Phương trình (1) sẽ trở thành: \(x\left(m-2\right)\left(m+2\right)=m-2\)

=>x(m+2)=1

=>\(x=\dfrac{1}{m+2}\)

f: \(m^2x-3=4x-\left(m-1\right)\)(2)

=>\(m^2x-4x=-m+1+3\)

=>\(x\left(m^2-4\right)=-m+2\)

=>\(x\left(m-2\right)\left(m+2\right)=-\left(m-2\right)\)

TH1: m=2

Phương trình (2) sẽ trở thành: \(x\left(2-2\right)\left(2+2\right)=-\left(2-2\right)\)

=>0x=0(luôn đúng)

TH2: m=-2

Phương trình (2) sẽ trở thành: \(x\left(-2-2\right)\left(-2+2\right)=-\left(-2-2\right)\)

=>0x=4

=>\(x\in\varnothing\)

TH3: \(m\notin\left\{2;-2\right\}\)

Phương trình (2) sẽ là: x(m-2)(m+2)=-(m-2)

=>x(m+2)=-1

=>\(x=-\dfrac{1}{m+2}\)

g: \(m^3x-4=m^2+4mx-4m\)(3)

=>\(m^3x-4mx=m^2-4m+4\)

=>\(x\left(m^3-4m\right)=\left(m-2\right)^2\)

=>\(x\cdot m\cdot\left(m+2\right)\left(m-2\right)=\left(m-2\right)^2\)

TH1: m=2

Phương trình (3) sẽ trở thành: \(x\cdot2\cdot\left(2+2\right)\left(2-2\right)=\left(2-2\right)^2\)

=>0x=0(luôn đúng)

TH2: m=0

Phương trình (3) sẽ trở thành:

\(x\cdot0\cdot\left(0+2\right)\left(0-2\right)=\left(0-2\right)^2\)

=>0x=4

=>\(x\in\varnothing\)

TH3: m=-2

Phương trình (3) sẽ trở thành;

\(x\cdot\left(-2\right)\left(-2+2\right)\left(-2-2\right)=\left(-2-2\right)^2\)

=>0x=16

=>\(x\in\varnothing\)

TH4: \(m\notin\left\{0;2;-2\right\}\)

Phương trình (3) sẽ trở thành:

\(x\cdot m\left(m+2\right)\left(m-2\right)=\left(m-2\right)^2\)

=>\(x=\dfrac{\left(m-2\right)^2}{m\left(m+2\right)\left(m-2\right)}=\dfrac{m-2}{m\left(m+2\right)}\)

13 tháng 11 2016

=> 2x + m - 4 = 0 hoặc 2mx - x + m = 0

<=> 2x + m - 4=0(1) hoặc (2m - 1)x +m =0(2)

(1)

Xét m = 0 thì pt có nghiệm duy nhất là x = 2

Xét m ≠ 0 thì pt có nghiệm là x = (4-m)/2

(2)

Xét m = 1/2 thì pt vô nghiệm.

Xét m ≠ 1/2 thì pt có nghiệm duy nhất là x= -1/(4m - 2)

Câu b thì bn viết ko rõ đề lắm nên k giải.

 

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)\ne0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình có vô số nghiệm thì \(m-3=0\)

hay m=3

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\m^2-4m+3< >0\end{matrix}\right.\Leftrightarrow m=-2\)

\(\Leftrightarrow mx-m^2+3m=mx-2m+6\)

\(\Leftrightarrow-m^2+5m-6=0\)

=>(m-2)(m-3)=0

=>m=2 hoặc m=3