K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Xét trường hợp 1 :

a lẻ:

\(a-1\) luôn luôn chẵn

\(a-30\) luôn luôn lẻ

\(a-62\) luôn luôn lẻ

Vậy \(\left(a-30\right)-\left(a-62\right)\)=lẻ-lẻ= chẵn \(⋮2\)

Xét trường hợp 2:

a chẵn:

\(a-1\) luôn luôn lẻ

\(a-30\) luôn luôn chẵn

\(a-62\) luôn luôn chẵn

\(\Rightarrow\left(a-30\right)-\left(a-62\right)=\) chẵn -chẵn=chẵn \(⋮2\)

\(\rightarrowđpcm\)

3 tháng 2 2018

Gọi 3 STN là a;a+1+a+2 (a\(\in\)N*)

\(\Rightarrow\)Tổng 3 STN là a+(a+1)+(a+2) 

                                 =3a+3\(⋮3\)

Vậy tồn tại 3 STN chia hết cho 3

13 tháng 11 2015

http://d.violet.vn/uploads/resources/511/507795/preview.swf

BÀI 6

13 tháng 11 2015

sao phải xoắn ai chẳng lm đc

24 tháng 11 2018

Đề bài là 2011 chính xác hơn ( tất nhiên 2001 vẫn đúng, nhưng 2011 sẽ là số sát với lời giải hơn).

Ta làm như sau: Một số tự nhiên khi chia 2011 sẽ có thể có 2011 số dư 0;1;2;...;2010.

Chia các số dư này thành các nhóm 0, (1;2010), (2;2009),....,(1005;1006).

Có 1006 nhóm, mà có 1007 số nên theo nguyên lý Đirichle sẽ có 2 số ở cùng 1 nhóm. 2 số này sẽ có tổng hoặc hiệu chia hết cho 2011

7 tháng 7 2017

Đề bài là 2011 chính xác hơn ( tất nhiên 2001 vẫn đúng, nhưng 2011 sẽ là số sát với lời giải hơn). Ta làm như sau: Một số tự nhiên khi chia 2011 sẽ có thể có 2011 số dư 0;1;2;...;2010. Chia các số dư này thành các nhóm 0, (1;2010), (2;2009),....,(1005;1006). Có 1006 nhóm, mà có 1007 số nên theo nguyên lý Đirichle sẽ có 2 số ở cùng 1 nhóm. 2 số này sẽ có tổng hoặc hiệu chia hết cho 2011

T
10 tháng 11 2015

Theo nguyên tắc Di-rich-lê ta có: Trong 42 số tự nhiên bất kì có it nhất 2 số khi chia cho 41 có cùng số dư.                              

=> Hiệu cuả 2 số đó chia hết cho 41

=> ĐPCM

 

2 tháng 3 2018

Giả sử không tìm được số nào trong n số tự nhiên liên tiếp đã cho mà chia hết cho n. Khi đó n số này chia cho n chỉ nhận được nhiều

nhất là \(n-1\) số dư khác nhau \(\left(1;2;3;.....;n-1\right)\), theo nguyên lí Dirichlet tồn tại hai số chia cho n có cùng số dư, chẳng

hạn là a và b với a > b, khi đó a - b chia hết cho n, điều này mâu thuẫn với \(0< a-b< n\). Từ đó suy ra điều phải chứng minh.