K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Đặt A= 1/1.2 + 1/2.3 + 1/3.4+...+ 1/999.1000

=1-1/2+1/2-1/3+1/3-1/4+...+1/999-1/1000

=1-1/1000

=999/1000

12 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{999.1000}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(=1-\dfrac{1}{1000}\)

\(=\dfrac{999}{1000}\)

20 tháng 3 2016

Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{999.1000}\)

\(=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{999}-\frac{1}{1000}\right)\)

\(=\frac{1}{1}-\frac{1}{1000}\)

\(=\frac{999}{1000}\)

20 tháng 3 2016

1/1.2+1/2.3+1/3.4+...+1/999.1000

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/999-1000

=1/1-1/1000

=999/1000

9 tháng 5 2022

999/1000(hình như v)

9 tháng 5 2022

Áp dụng công thức \(\dfrac{1}{k\left(k+1\right)}=\dfrac{1}{k}-\dfrac{1}{k+1}\), ta có:

\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{999}-\dfrac{1}{1000}\right)=1-\dfrac{1}{1000}=\dfrac{999}{1000}\)

15 tháng 1 2017

A=999/1000

B= ...........

C=..................

4 tháng 8 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}+1\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)

\(=1-\frac{1}{1000}+1\)

\(=\frac{1000}{1000}-\frac{1}{1000}+\frac{1000}{1000}\)

\(=\frac{1999}{1000}\)

Tham khảo nhé~

4 tháng 8 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}+1\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)

\(1-\frac{1}{1000}+1\)

\(\frac{1999}{1000}\)

17 tháng 9 2017

Cách làm :

Áp dụng công thức : \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\)

\(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{999.1000}\)

\(\Leftrightarrow C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=1-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{999}{1000}\)

\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+.........+\dfrac{1}{99.101}\)

\(\Leftrightarrow2F=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{99.101}\)

\(\Leftrightarrow2F=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{99}-\dfrac{1}{101}\)

\(\Leftrightarrow2F=1-\dfrac{1}{101}\)

\(\Leftrightarrow2F=\dfrac{100}{101}\)

\(\Leftrightarrow F=\dfrac{50}{101}\)

17 tháng 9 2017

Giải:

\(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\)

\(\Leftrightarrow C=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{1}{1}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{999}{1000}\)

Sửa đề:

\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{999.1001}\)

\(\Leftrightarrow F=\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{999}-\dfrac{1}{1001}\right)\)

\(\Leftrightarrow F=\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{1001}\right)\)

\(\Leftrightarrow F=\dfrac{1}{2}.\dfrac{1000}{1001}\)

\(\Leftrightarrow F=\dfrac{500}{1001}\)

Chúc bạn học tốt!

24 tháng 3 2017

a, 1/1.2+1/2.3+1/3.4+...+1/999.1000

=  1/1-1/2+1/2-1/3+1/3-1/4+....+1/999-1/1000

=   1/1-1/1000

=   999/1000

b, 1/2.4+1/4.6+1/6.8+1/8.10

=  1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10

=  1/2-1/10

=   4/10  =2/5

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

a.

$A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$

$=1-\frac{1}{1000}=\frac{999}{1000}$

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

b.

$5B=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{495.500}$

$=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{500-495}{495.500}$

$=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{495}-\frac{1}{500}$

$=1-\frac{1}{500}=\frac{499}{500}$

$\Rightarrow B=\frac{499}{500}: 5= \frac{499}{2500}$

17 tháng 6 2020

1/1.2 . 22/2.3 . 32/3.4 ...  9992/999.1000

= 1.1/1.2 . 2.2/2.3 . 3.3/3.4........... 999.999/999.1000

= 1/2. 2/3 . 3.4.....999/1000

= 1/1000

17 tháng 6 2020

thanks