K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

Ta có

  \(P=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)  Điều kiện \(a\ge0,a\ne\pm\sqrt{2}\)

      \(=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\frac{1}{\sqrt{a}-2}\)

       \(=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-1\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

       \(=\frac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

       \(=\frac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

       \(=\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)

        

Bài 1: Tính

a) Ta có: \(\frac{\sqrt{6+\sqrt{11}}-\sqrt{7-\sqrt{33}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{14-2\sqrt{33}}}{\sqrt{12}+2}\)

\(=\frac{\sqrt{11+2\cdot\sqrt{11}\cdot1+1}-\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{3}+3}}{2\sqrt{3}+2}\)

\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}}{2\sqrt{3}+2}\)

\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-\sqrt{3}\right|}{2\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{11}+1-\left(\sqrt{11}-\sqrt{3}\right)}{2\left(1+\sqrt{3}\right)}\)(Vì \(\left\{{}\begin{matrix}\sqrt{11}>1>0\\\sqrt{11}>\sqrt{3}\end{matrix}\right.\))

\(=\frac{\sqrt{11}+1-\sqrt{11}+\sqrt{3}}{2\left(1+\sqrt{3}\right)}\)

\(=\frac{1+\sqrt{3}}{2\left(1+\sqrt{3}\right)}=\frac{1}{2}\)

b) Ta có: \(\frac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

\(=\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(8-\sqrt{15}\right)}{\sqrt{5}+\sqrt{3}}\)

\(=\sqrt{15}+\frac{2}{4+\sqrt{15}}-\left(8-\sqrt{15}\right)\)

\(=\sqrt{15}+\frac{2}{4+\sqrt{15}}-8+\sqrt{15}\)

\(=2\sqrt{15}-8+\frac{2}{4+\sqrt{15}}\)

\(=\frac{2\sqrt{15}\left(4+\sqrt{15}\right)}{4+\sqrt{15}}-\frac{8\left(4+\sqrt{15}\right)}{4+\sqrt{15}}+\frac{2}{4+\sqrt{15}}\)

\(=\frac{8\sqrt{15}+30-32-8\sqrt{15}+2}{4+\sqrt{15}}\)

\(=\frac{0}{4+\sqrt{15}}=0\)

Bài 2: Rút gọn

Ta có: \(B=\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\left(\frac{1+\sqrt{a}}{a-1}\right)^2\)

\(=\left(\frac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}-\sqrt{a}\right)\cdot\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)^2\)

\(=\left(1-\sqrt{a}+a-\sqrt{a}\right)\cdot\left(\frac{1}{\sqrt{a}-1}\right)^2\)

\(=\left(a-2\sqrt{a}+1\right)\cdot\frac{1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2}=1\)

Bài 3:

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{9;4\right\}\end{matrix}\right.\)

b) Ta có: \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3-3\sqrt{x}}{x-5\sqrt{x}+6}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{3-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-4-\left(x-2\sqrt{x}-3\right)+3-3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-3\sqrt{x}-1-x+2\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{1}{3-\sqrt{x}}\)

c) Để A<-1 thì A+1<0

\(\Leftrightarrow\frac{1}{3-\sqrt{x}}+1< 0\)

\(\Leftrightarrow\frac{-1}{\sqrt{x}-3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\frac{-1+\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\frac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>4\\\sqrt{x}< 3\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 4\\\sqrt{x}>3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16\)

18 tháng 6 2019

\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\\ A=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\\ A=\sqrt{3}-2\)

\(C=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\\ C=\left(\frac{a\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{a+2}{a-2}\\ C=\left(\frac{a}{\sqrt{a}}-\frac{a}{\sqrt{a}}\right):\frac{a+2}{a-2}\\ C=0\)

18 tháng 6 2019

Mình thấy hình như chưa đúng lắm

9 tháng 7 2019

\(1,\)\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}\)

\(=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

10 tháng 7 2019

ò, Linh ơi, mình nghĩ bạn làm đúng nhưng mà chỗ dấu ''='' thứ nhất bạn ghi ''4b'' nhưng bước đó bạn phải ghi là ''2b'' tại bước đó chưa có quy đồng, quy đồng mới thành 4b do mẫu chung là \(2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\), chắc bạn hiểu, cảm ơn bạn nhiều nha!

13 tháng 7 2016

a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)

\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)

\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)

\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)

b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)

\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)

C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)

\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)

\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)

\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)

d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)

\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)

e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)