2) cho hàm số \(y=\left(a-1\right)x+a\) \(\left(a\ne1\right)\) (1)
a) chứng tỏ: đò thị hàm số (1) luôn đi qua (-1; 1)
b) xác định a để đồ thị (1) cắt trục tung tại điểm có tung độ 3. vẽ đồ thị hàm số
c) xác định a để đò thị (1) cắt trục hoành tại điểm có hoành độ -2. tính khoảng cách từ gốc tọa độ O tới đường thẳng
giúp mk vs ah mk cần gấp
a, gọi điểm hàm số (1) luôn đi qua là A(xo,yo) thì xo,yo thỏa mãn (1)
\(=>yo=\left(a-1\right)xo+a< ->a.\left(xo+1\right)-\left(xo+yo\right)=0\)
\(=>\left\{{}\begin{matrix}xo+1=0\\xo+yo=0\end{matrix}\right.\)=>xo=-1,yo=1 vậy.....
b,\(=>x=0,y=3=>\left(1\right):a=3\)(tm)
c,\(=>x=-2,y=0=>\left(1\right):0=\left(a-1\right)\left(-2\right)+a=>a=2\left(tm\right)\)
\(=>y=x+2\) cho x=0=>y=2=>A(0;2)
cho y=0=>x=-2=>B(-2;0)
gọi OH là khoảng cách từ gốc tọa độ đến đồ thị hàm số(1)
\(=>\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=>\dfrac{1}{OH^2}=\dfrac{1}{2^2}+\dfrac{1}{\left(-2\right)^2}=>OH=....\)
m