phân tích đa thức thành nhân tử
a)m^2+2mn+n^2-p^2+2pq-q^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Easy \(x^2-n^2-2xy+y^2-m^2+2mn\)
\(=\left(x^2-2xy+y^2\right)-\left(n^2-2mn+m^2\right)\)
\(=\left(x-y\right)^2-\left(n-m\right)^2\)
\(=\left(x-y-n+m\right)\left(x-y+n-m\right)\)
\(x^2-n^2-2xy+y^2-m^2+2mn\)
\(=\left(x^2-2xy+y^2\right)-\left(n^2-2mn+m^2\right)\)
\(=\left(x-y\right)^2-\left(n-m\right)^2\)
\(=\left(x-y-n+m\right)\left(x-y+n-m\right)\)
\(m^2-16+n^2-2mn\)
\(=n^2-2mn+m^2-16\)
\(=\left(n-m\right)^2-16\)
\(=\left(n-m-4\right)\left(n-m+4\right)\)
m2 - 16 + n2 - 2mn
= m2 - 2mn + n2 - 16
= (m - n)2 - 42
= (m - n - 4)(m - n + 4)
a: \(x^3z+x^2yz-x^2z^2-xyz^2\)
\(=x^2z\left(x+y\right)-xz^2\left(x+y\right)\)
\(=xz\left(x+y\right)\left(x-z\right)\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Phân tích thành nhân tử
\(=\left(my+nx\right)\left(ny+mx\right)\)
mn(x2 +y2) +xy(m2 +n2)= mnx2 +mny2 +xym2 +xyn2
=mx(nx + my) +ny( my +nx)
=(mx+ny)(nx+my)
\(=m^2-\left(n-2\right)^2=\left(m-n+2\right)\left(m+n-2\right)\)
\(=\left(m-n\right)\left(m+n\right)-2\left(m+n\right)=\left(m+n\right)\left(m-n-2\right)\)
a: Ta có: \(m^2+2mn+n^2-p^2+2pq+q^2\)
\(=\left(m+n\right)^2-\left(p-q\right)^2\)
\(=\left(m+n-p+q\right)\left(m+n+p-q\right)\)