tìm GTNN của
C= \(x^2-3x+5\)
D=\(3x^2-6x-1\)
E=\(2x^2-6x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
a/\(3x-15=0\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Vậy nghiệm của A là x = 5
b/\(\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy nghiệm của B là \(x\in\left\{2;-3\right\}\)
c/\(\left(2x-1\right)\left(x^2+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\x^2+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\x^2=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy nghiệm của C là \(x=\dfrac{1}{2}\)
d/\(3x^2-6x=0\)
\(\Rightarrow x\left(3x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy nghiệm của D là \(x\in\left\{0;2\right\}\)
e/\(2x\left(x-3\right)-5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=5\\x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
Vậy nghiệm của E là \(x\in\left\{\dfrac{5}{2};3\right\}\)
Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
\(a,A=9x^2+5-6x=9x^2-6x+1+4\)
\(=\left(3x-1\right)^2+4\)
Vì: \(\left(3x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow\)GTNN của A là 4 tại \(\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)
b,\(B=1+x^2-x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì: \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow\)GTNN của B là 3/4 tại \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)
Các phần cn lại lm tg tự nha bn
Theo mình nghĩ thì phải là giá trị lớn nhất
A=-(x^2-4x+5)
A=-[(x-2)^2+1]
Mà (x-2)^2+1>=1
Nên A<=-1
B=-(x^2+6x-1)
B=-[(x+3)^2-10]
nên B<=10
C=-(x^2+3x+2)
C=-(x^2+3x+9/4-1/4)
C=-[(x+3/2)^2-1/4]
Nên C<=1/4
D=-(2x^2-3x+1)
D=-2(x^2-3x/2+1/2)
D=-2(x^2-3x/2+9/16-1/16)
D=-2[(x-3/2)^2-1/16]
Nên D<=1/8
Chúc bạn học tốt!
\(C=x^2-3x+5\)
\(=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
Vì \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
\(\Rightarrow C\ge\dfrac{11}{4}\forall x\)
Dấu "=" xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Vậy \(MIN_C=\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{2}.\)
\(D=3x^2-6x-1\)
\(=3\left(x^2-3x-\dfrac{1}{3}\right)\)
\(=3\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{31}{12}\right)\)
\(=3\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{31}{12}\right]\)
\(=3\left(x-\dfrac{3}{2}\right)^2-\dfrac{31}{4}\)
.......
Vậy \(MIN_D=\dfrac{-31}{4}\) khi \(x=\dfrac{3}{2}.\)
\(E=2x^2-6x\)
\(=2\left(x^2-3x\right)\)
\(=2\left[\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{9}{4}\right]\)
\(=2\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
.....
Vậy \(MIN_E=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}.\)
what