-4 sin^2-8cos^2 x\2=-9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\Leftrightarrow cos^3\left(x-\frac{\pi}{3}\right)=\frac{1}{8}\)
\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=k2\pi\end{matrix}\right.\)
a/
\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{6}-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{6}+\frac{k2\pi}{3}\)
b/
\(\Rightarrow sin^4x-cos^4x=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow-cos2x=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow cos2x=-sin\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{5\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x=x+\frac{5\pi}{6}+k2\pi\\2x=-x-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(\Leftrightarrow8\cos^3x-3\cos^2x-4\cos x+\left(1-\cos^2x\right)=0\)
\(\Leftrightarrow8\cos^3x-4\cos^2x-4\cos x+1=0\)
Sau đó ấn máy tính nhưng bài này ra nghiệm lẻ lắm bạn
\(sin^8x-cos^8x-4sin^6x+6sin^4x-4sin^2x\)
\(=sin^8x-\left(1-sin^2x\right)^4-4sin^6x+6sin^4x-4sin^2x\)
\(=sin^8x-\left(1-4sin^2x+6sin^4x-4sin^6x+sin^8x\right)-4sin^6x+6sin^4x-4sin^2x\)\(=-1\) (bạn chép nhầm đề)
b/ \(\frac{sin6x+sin2x+sin4x}{1+cos2x+cos4x}=\frac{2sin4x.cos2x+sin4x}{1+cos2x+2cos^22x-1}=\frac{sin4x\left(2cos2x+1\right)}{cos2x\left(2cos2x+1\right)}=\frac{sin4x}{cos2x}=\frac{2sin2x.cos2x}{cos2x}=2sin2x\)
c/ \(\frac{1+sin2x}{cosx+sinx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{sin^2x+cos^2x+2sinx.cosx}{cosx+sinx}-\left(1-tan^2\frac{x}{2}\right)cos^2\frac{x}{2}\)
\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)=sinx+cosx-cosx=sinx\)
d/ \(cos4x+4cos2x+3=2cos^22x-1+4cos2x+3\)
\(=2\left(cos^22x+2cos2x+1\right)=2\left(cos2x+1\right)^2=2\left(2cos^2x-1+1\right)^2=8cos^4x\)
e/
1a.
Đặt \(5x+6=u\)
\(cos2u+4\sqrt{2}sinu-4=0\)
\(\Leftrightarrow1-2sin^2u+4\sqrt{2}sinu-4=0\)
\(\Leftrightarrow2sin^2u-4\sqrt{2}sinu+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinu=\dfrac{3\sqrt{2}}{2}>1\left(loại\right)\\sinu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow sin\left(5x+6\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+6=\dfrac{\pi}{4}+k2\pi\\5x+6=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{6}{5}+\dfrac{\pi}{20}+\dfrac{k2\pi}{5}\\x=-\dfrac{6}{5}+\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)
1b.
Đặt \(2x+1=u\)
\(cos2u+3sinu=2\)
\(\Leftrightarrow1-2sin^2u+3sinu=2\)
\(\Leftrightarrow2sin^2u-3sinu+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinu=1\\sinu=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+1\right)=1\\sin\left(2x+1\right)=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{\pi}{2}+k2\pi\\2x+1=\dfrac{\pi}{6}+k2\pi\\2x+1=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}+\dfrac{\pi}{4}+k\pi\\x=-\dfrac{1}{2}+\dfrac{\pi}{12}+k\pi\\x=-\dfrac{1}{2}+\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)
Câu 2 bạn coi lại đề
3.
\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)
\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)
\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)
\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm
5.
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)
\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)
\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)
\(\Leftrightarrow2sin^3x-sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)
\(\Leftrightarrow...\)
ĐKXĐ: ...
a/ \(\frac{sin2x}{cos2x}+\frac{cosx}{sinx}=8cos^2x\)
\(\Leftrightarrow sin2x.sinx+cos2x.cosx=8cos^2x.sinx.cos2x\)
\(\Leftrightarrow cosx=4sin2x.cos2x.cosx\)
\(\Leftrightarrow cosx=2sin4x.cosx\)
\(\Leftrightarrow cosx\left(2sin4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin4x=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
b/ \(\frac{cosx}{sinx}-\frac{sinx}{cosx}+4sin2x=\frac{1}{sinx.cosx}\)
\(\Leftrightarrow cos^2x-sin^2x+4sin2x.sinx.cosx=1\)
\(\Leftrightarrow cos2x+2sin^22x=1\)
\(\Leftrightarrow cos2x+2\left(1-cos^22x\right)=1\)
\(\Leftrightarrow-2cos^22x+cos2x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
1c/
\(5sinx-2=3\left(1-sinx\right)\frac{sin^2x}{1-sin^2x}\)
\(\Leftrightarrow5sinx-2=\frac{3sin^2x}{1+sinx}\)
\(\Leftrightarrow\left(5sinx-2\right)\left(1+sinx\right)=3sin^2x\)
\(\Leftrightarrow5sin^2x+3sinx-2=3sin^2x\)
\(\Leftrightarrow2sin^2x+3sinx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=...\)
Bài 2:
a/ \(\Leftrightarrow\frac{\left(m+1\right)\left(1-cos2x\right)}{2}-sin2x+cos2x=0\)
\(\Leftrightarrow2sin2x+\left(m-1\right)cos2x=m+1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(4+\left(m-1\right)^2\ge\left(m+1\right)^2\)
\(\Leftrightarrow4m\le4\Rightarrow m\le1\)