a) Vẽ a // b và c \(\perp\) a
b) Quan sát xem c cs vuông góc vs b k ?
c) Lí luận tại sao nếu a // b thì c\(\perp\)a thì c \(\perp\)b
Giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
a // b; c vuông góc với a tại M và cắt b tại N (như hình vẽ)
b, Theo quan sát chắc chắn c vuông góc với b
c, Lý luận:
Có a // b (gt)
c cắt a và b lần lượt tại M và N (hình vẽ)
=> Góc M1 = góc N2 (2 góc đồng vị)
Mà a vuông góc với c
=> góc M1 = 90o
=> góc N2 = 90o
=> b vuông góc với c
a)
b) Ta có:
Ta có c ⊥ b vì a // b nên nếu cắt a tại a thì c cũng cắt b tại b. Vì góc C1 = 90o nên góc B2 so le trong với nó cũng bẳng 900
Vây c ⊥ b.
C) Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.
a ⊥ c
a // b
=> c ⊥ b.
Bạn vừa viết chữ đẹp mà lại giỏi nữa chứ, hâm mộ quá
b: Theo hình vẽ, ta có: b có song song với c
c: Ta có: b//a
c//a
Do đó: b//c(định lí 3 từ vuông góc tới song song)
c, d đều là mệnh đề sai
Ví dụ: a và b cắt nhau và cùng thuộc mp (P), nếu c vuông góc (P) thì c vuông góc cả a và b \(\Rightarrow\) góc giữa a và c bằng góc giữa b và c (đều bằng 90 độ) nhưng a và b không song song
b: c có vuông góc với b
c: Vì a//b thì ta sẽ có hai góc so le trong bằng nhau
mà c vuông góc với a nên sẽ có 1 trong hai góc so le trong đó bằng 90 độ
Từ đó dẫn tới góc so le trong còn lại giữa b và c bằng 90 độ
=>ĐPCM