Cho đa thức M = x2+y2 = xy. Tìm x, y sao cho giá trị của M nhỏ nhất biết x + y = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$
Vậy gtnn của biểu thức là $\frac{5}{4}$
Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$
Bài 2:
$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)
\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)
Ta có m − 1 x − m y = 3 m − 1 2 x − y = m + 5 ⇔ y = 2 x − m − 5 m − 1 x − m 2 x − m − 5 = 3 m − 1
⇔ y = 2 x − m − 5 m − 1 x − 2 m x + m 2 + 5 m = 3 m − 1 ⇔ y = 2 x − m − 5 − m − 1 x = − m 2 − 5 m + 3 m − 1 ⇔ y = 2 x − m − 5 m + 1 x = m 2 + 2 m + 1 ⇔ y = 2 x − m − 5 1 m + 1 x = m + 1 2 2
Để hệ phương trình có nghiệm duy nhất thì phương trình (2) có nghiệm duy nhất hay m ≠ − 1
Khi đó từ phương trình (2) ta suy ra x = m + 1 2 m + 1 = m + 1 , thay x = m + 1vào phương trình (1) ta được y = 2 (m + 1) – m – 5 = m – 3
Vậy với m ≠ − 1 thì hệ đã cho có nghiệm duy nhất (x; y) = (m + 1; m – 3)
Ta xét S = x 2 + y 2 = ( m + 1 ) 2 + ( m – 3 ) 2 = m 2 + 2 m + 1 + m 2 − 6 m + 9
= 2 m 2 – 4 m + 10 = 2 ( m 2 – 2 m + 1 ) + 8 = 2 ( m – 1 ) 2 + 8
Vì ( m – 1 ) 2 ≥ 0 ; ∀ m ⇒ 2 ( m – 1 ) 2 + 8 ≥ 8 ; ∀ m
Hay S ≥ 8 ; ∀ m . Dấu “=” xảy ra khi m–1 = 0 ⇔ m=1 (TM)
Vậy m = 1 là giá trị cần tìm
Đáp án: A
Ta có: 2 x 2 + 1 2 ≥ 2 x ; 2 y 2 + 1 2 ≥ 2 y và x 2 + y 2 ≥ 2 x y
Cộng vế với vế các BĐT trên ta được:
3 x 2 + y 2 + 1 ≥ 2 x + y + x y = 5 2
=> A = x 2 + y 2 ≥ 1 2
Từ đó tìm được A m i n = 1 2 <=> x = y = 1 2
Áp dụng BĐT cói cho 2 số ko âm ta có
X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12
Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y
( thông cảm mình gõ mũ ko đc )
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)
\(\Rightarrow M=0+2019\)
\(\Rightarrow M=2019\)