Cho hình vẽ có Ax // BC . Chứng minh AH vuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải thích một số từ viết tắt:tam giác(tg) , góc (g)
TH1: tia Ax và AC nằm ở 2 nửa mặt phẳng đối nhau bờ là BA. CÒn tia Ay và AB nằm 2 nwả mặt phẳng bờ đối nhau bờ là AC:
TRên tia MA lấy điểm I sao cho MI=MA. tg BAM=tg CIM(c.g.c) => g ABM=gMCI=> gACI=gACM+gBAM=180- g BAC và BA=CI
LẠi có gDAE=180-gBAC nên gACI=gDAE. Dễ dàng chứng minh được tgACI=tgEAD(c.g.c)=>DE=AI=2AM
TH2: tia Ax và AC nằm cùng phía đối với BA. Còn BA và AE cùng phía đối với AC.trên tia đối MA lấy K sao cho KM=KA
Kéo dài BC nó sẽ cắt EA ở I gEAB= gABC-gAIB=gABC-90-gACB . tg EAB=tgCAD(c.g.c)=>gEAB+gDAC
TA có : gEAD=(gEAB+gDAC)+gBAC=(gABC-90-gACB)2+(1... =gB+gC=gBCK+gACM=gACK.Chứng minh tg ACK=tgEAD(c.g.c)=>AK=ED=2AM.
Cho tam giác ABC vuông góc tại B. trên cùng nửa mặt phẳng bờ chứa tia AC chứa điểm B vẽ tại tia Ax, Cy sao cho góc xAB=30 độ ,góc BCy=60 độ. Tìm kết luận
a) Xét tam giác AHB và AHC có:
AC = BC (gt)
\(\widehat{AHB}=\widehat{AHC}\) (AH vuông góc BC)
=> AHB = AHC (ch-gv)
=> HB = HC (cạnh tương ứng)
\(\widehat{BAH}=\widehat{CAH}\) (góc tương ứng)
b) Ta có HB = HC (cmt)
Mặt khác AH là cạnh góc vuông của tam giác vuông AHC
Áp dụng định lý Pitago ta có:
\(AC^2=AH^2+HC^2\\ =>10^2=AH^2+6^2\\ =>100=AH^2+36\)
\(=>AH^2=100-36=64\\ =>AH=\sqrt{64}=8\)
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
a) Xét tam giác AIC và tam giác BIH có:
\(\widehat{AIC}=\widehat{BIH}\)(đối đỉnh)
\(\widehat{ACI}=\widehat{BHI}=90^0\)
\(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\)
Câu b em xem lại đề nhé ! Sao AC=15cm và AC=25cm được nhỉ ?
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm
Ta có: Ax// BC
=>\(\widehat{HAx}=\widehat{AHC}=90^0\)
=> AH _|_ BC