Cho \(a^2+b^2+(a-b)^2=c^2+d^2+(c-d)^2 \)
CMR \(a^4+b^4+(a-b)^4=c^4+d^4+(c-d)^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2+b^2+\left(a+b\right)^2=c^2+d^2+\left(c+d\right)^2\)
=> \(a^2+b^2+a^2+b^2+2ab=c^2+d^2+c^2+d^2+2cd\)
=> \(a^2+b^2+ab=c^2+d^2+cd\)
=> \(\left(a^2+b^2+ab\right)^2=\left(c^2+d^2+cd\right)^2\)
=> \(a^4+b^4+a^2b^2+2a^2b^2+2a^3b+2b^3a=c^4+d^4+c^2d^2\)
\(+2c^2d^2+2c^3d+2cd^3\)
=> \(2a^4+2b^4+6a^2b^2+4a^3b+4ab^3=2c^4+2d^4+6c^2d^2\)
\(+4c^3d+4cd^3\)
=> \(a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)
=> đpcm
Nhận xét:Ghi nhớ tam giác Pascal cho bậc 4:\(1\rightarrow4\rightarrow6\rightarrow4\rightarrow1\)
cần cù bù thông minh :)
\(a^2+b^2+\left(a-b\right)^2=c^2+d^2+\left(c-d\right)^2\)
\(\Leftrightarrow a^2+b^2+a^2-2ab+b^2=c^2+d^2+c^2-2cd+d^2\)
\(\Leftrightarrow a^2-ab+b^2=c^2-cd+d^2\)
\(\Rightarrow\left(a^2-ab+b^2\right)^2=\left(c^2-cd+d^2\right)^2\) ( mạnh dạn bình phương )
\(\Leftrightarrow a^4+a^2b^2+b^4-2a^3b-2ab^3+2a^2b^2=c^4+c^2d^2+d^4-2c^3d-2cd^3+2c^2d^2\)
\(\Leftrightarrow a^4+3a^2b^2+b^4-2a^3b-2ab^3=c^4+3c^2d^2+d^4-2c^3d-2cd^3\left(1\right)\)
Mặt khác:
\(a^4+b^4+\left(a-b\right)^4\)
\(=a^4+b^4+a^4-4a^3b+6a^2b^2-4ab^3+b^4\)
\(=2\left(a^4-2a^3b-2ab^3+3a^2b^2\right)\left(2\right)\)
Tương tự:
\(c^4+d^4+\left(c-d\right)^4=2\left(c^4-2c^3d-2cd^3+3c^2d^2\right)\left(3\right)\)
Từ ( 1 );( 2 );( 3 ) suy ra đpcm
Lần sau bạn vào fx viết đề cho rõ nhé :))
\(Gt\Leftrightarrow a^2+b^2+ab=c^2+d^2+cd\)
Bình 2 vế đc:
\(a^4+b^4+2a^3b+2ab^3+3a^2b^2\)\(=c^4+d^4+2c^3d+2cd^3+3c^2d^2\)
\(\Leftrightarrow2\left(a^4+b^4+2a^3b+2ab^3+3a^2b^2\right)\)\(=2\left(c^4+d^4+2c^3d+2cd^3+3c^2d^2\right)\)
\(\Leftrightarrow a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)
Ừ, bn chỉ n đổi dấu + thành - @Trần Đạt
trong quyển bồi dưỡng hsg toán THCS có giải đấy
tất cả đều ở trỏng