K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

a, \(A=4x^2-4x+2017\)

\(=4x^2-4x+1+2016\)

\(=\left(2x-1\right)^2+2016\ge2016\)

Dấu " = " khi \(\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(MIN_A=2016\) khi \(x=\dfrac{1}{2}\)

b, \(B=-x^2+5x-2018\)

\(=-\left(x^2-5x+2018\right)\)

\(=-\left(x^2-\dfrac{5}{2}x2+\dfrac{25}{4}+\dfrac{8047}{4}\right)\)

\(=-\left[\left(x-\dfrac{5}{2}\right)^2+\dfrac{8047}{4}\right]\)

\(=-\left(x-\dfrac{5}{2}\right)^2-\dfrac{8047}{4}\le\dfrac{-8047}{4}\)

Dấu " = " khi \(\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)

Vậy \(MAX_B=\dfrac{-8047}{4}\) khi \(x=\dfrac{5}{2}\)

4 tháng 7 2017

a, \(4x^2-4x+2017=4x^2-2x-2x+1+2016\)

\(=\left(2x-1\right)^2+2016\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(2x-1\right)^2+2016\ge2016\) với mọi giá trị của \(x\in R\)

Để \(\left(2x-1\right)^2+2016=2016\) thì \(2x-1=0\)

\(\Rightarrow x=\dfrac{1}{2}\)

Vậy......................

b, \(-x^2+5x-2018=-\left(x^2-2,5x-2,5x+6,25+2011,75\right)\)

\(=-\left[\left(x-2,5\right)^2+2011,75\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2,5\right)^2+2011,75\ge2011,75\)

\(\Rightarrow-\left[\left(x-2,5\right)^2+2011,75\right]\le-2011,75\)với mọi giá trị của \(x\in R\)

Để \(-\left[\left(x-2,5\right)^2+2011,75\right]=-2011,75\) thì \(\left(x-2,5\right)^2=0\)

\(\Rightarrow x=2,5\)

Vậy...............

Chúc bạn học tốt!!!

5 tháng 10 2018

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

12 tháng 12 2016

\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)

Vì: \(\left(x-2\right)^2\ge0\)

=> \(\left(x-2\right)^2+3\ge3\)

Vậy GTNN của A là 3 khi x=2

\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)

Vì: \(2\left(x+3\right)^2\ge0\)

=> \(2\left(x+3\right)^2-19\ge-19\)

Vậy GTNN của B là -19 khi x=-3

\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)

=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)

12 tháng 12 2016

Căm ơn bạn nhiều nhé ! Nếu được thì bạn làm giúp tớ bài hình bên trên nhé.

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

DD
26 tháng 6 2021

\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)

Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).

\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)

Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).

10 tháng 7 2021

undefined

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

14 tháng 7 2017

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

14 tháng 7 2017

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0