K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)=a-b\)

b) đề sai rồi nha

c) \(\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}=\dfrac{a\sqrt{a}-4\sqrt{a}+2a-8}{a-4}\)

\(=\dfrac{\sqrt{a}\left(a-4\right)+2\left(a-4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)\left(a-4\right)}{a-4}=\sqrt{a}+2\)

NV
28 tháng 4 2021

a. \(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{a}\)

b. \(=\dfrac{1-\left(2\sqrt{a}\right)^3}{1-2\sqrt{a}}=\dfrac{\left(1-2\sqrt{a}\right)\left(1+2\sqrt{a}+4a\right)}{1-2\sqrt{a}}=1+2\sqrt{a}+4a\)

c. \(=\dfrac{1-\left(\sqrt{a}\right)^2}{1+\sqrt{a}}=\dfrac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}{1+\sqrt{a}}=1-\sqrt{a}\)

d. \(=\dfrac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}=\sqrt{a}\)

\(I=\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left[\left(\dfrac{a+\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right)\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)

\(=\dfrac{a+2\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left(\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\cdot\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-b\right)}\)

\(=\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2\cdot\left(a-\sqrt{ab}+b\right)}\)

Khi a=16 và b=4 thì \(I=\dfrac{16+4+4\cdot\sqrt{16\cdot4}}{\left(4-2\right)^2\cdot\left(16-\sqrt{16\cdot4}+4\right)}=\dfrac{20+4\cdot8}{4\cdot12}\)

\(=\dfrac{20+32}{48}=\dfrac{52}{48}=\dfrac{13}{12}\)

8 tháng 8 2023

kh đúng

26 tháng 5 2022

\(B=\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}.\sqrt{b}}\)

\(B=\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}.\sqrt{ab}\)

\(B=a\sqrt{b}-b\sqrt{a}\)

26 tháng 5 2022

Với `a,b > 0` có:

`B=[a\sqrt{b}-b\sqrt{a}]/\sqrt{ab} :1/[\sqrt{a}.\sqrt{b}]`

`B=[a\sqrt{b}-b\sqrt{a}]/[\sqrt{ab}] .\sqrt{ab}`

`B=a\sqrt{b}-b\sqrt{a}`

17 tháng 12 2023

a: \(\dfrac{2}{\sqrt{3}-1}-\dfrac{2}{\sqrt{3}+1}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}\)

\(=\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{2}=\dfrac{4}{2}=2\)

b: \(\dfrac{\sqrt{12}-\sqrt{6}}{\sqrt{30}-\sqrt{15}}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{\sqrt{15}\left(\sqrt{2}-1\right)}\)

\(=\dfrac{\sqrt{6}}{\sqrt{15}}=\sqrt{\dfrac{6}{15}}=\sqrt{\dfrac{2}{5}}=\dfrac{\sqrt{10}}{5}\)

c: \(\sqrt{9a}+\sqrt{81a}+3\sqrt{25a}-16\sqrt{49a}\)

\(=3\sqrt{a}+9\sqrt{a}+3\cdot5\sqrt{a}-16\cdot7\sqrt{a}\)

\(=27\sqrt{a}-112\sqrt{a}=-85\sqrt{a}\)

d: \(\dfrac{ab-bc}{\sqrt{ab}-\sqrt{bc}}=\dfrac{\left(\sqrt{ab}-\sqrt{bc}\right)\left(\sqrt{ab}+\sqrt{bc}\right)}{\sqrt{ab}-\sqrt{bc}}\)

\(=\sqrt{ab}+\sqrt{bc}\)

e: \(a\left(\sqrt{\dfrac{a}{b}+2\sqrt{ab}+b\cdot\sqrt{\dfrac{a}{b}}}\right)\cdot\sqrt{ab}\)

\(=a\cdot\sqrt{\dfrac{a}{b}\cdot ab+2\sqrt{ab}\cdot ab+b\cdot\sqrt{\dfrac{a}{b}}\cdot ab}\)

\(=a\cdot\sqrt{a^2+2\cdot ab\cdot\sqrt{ab}+a\sqrt{a}\cdot b\sqrt{b}}\)

\(=a\cdot\sqrt{a^2+3\cdot a\cdot\sqrt{a}\cdot b\cdot\sqrt{b}}\)

e: ĐKXĐ: a>=0 và a<>1

\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}+1}\)

\(=\left(1+\sqrt{a}+\sqrt{a}+a\right)\cdot\left(a-\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)^2\cdot\left(a-\sqrt{a}+1\right)\)

28 tháng 10 2021

\(M=\dfrac{a\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\\ M=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ M=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)

\(\left(1-a\right)\left(1-b\right)+2\sqrt{ab}=1\\ \Leftrightarrow1-a-b+ab+2\sqrt{ab}=1\\ \Leftrightarrow a+b-ab-2\sqrt{ab}=0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=ab\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{a}-\sqrt{b}=\sqrt{ab}\\\sqrt{a}-\sqrt{b}=-\sqrt{ab}\end{matrix}\right.\)

Với \(\sqrt{a}-\sqrt{b}=\sqrt{ab}\Leftrightarrow M=\dfrac{\sqrt{ab}}{\sqrt{ab}}=1\)

Với \(\sqrt{a}-\sqrt{b}=-\sqrt{ab}\Leftrightarrow M=\dfrac{\sqrt{ab}}{-\sqrt{ab}}=-1\)

28 tháng 10 2021

\(M=\dfrac{a\sqrt{a}-b\sqrt{b}-a\left(\sqrt{a}-\sqrt{b}\right)+b\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)

\(\left(1-a\right)\left(1-b\right)+2\sqrt{ab}=1\)

\(\Leftrightarrow a+b-ab-2\sqrt{ab}=0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=ab\Leftrightarrow\sqrt{a}-\sqrt{b}=\sqrt{ab}\)

\(M=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}}{\sqrt{ab}}=1\)

\(A=\dfrac{2-\sqrt{a}-\sqrt{a}-3}{2\sqrt{a}+1}=-1\)

\(B=\dfrac{1}{1-\sqrt{2+\sqrt{3}}}-\dfrac{1}{1-\sqrt{2-\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{2}-\sqrt{3}-1}-\dfrac{\sqrt{2}}{\sqrt{2}-\sqrt{3}+1}\)

\(=\dfrac{2-\sqrt{6}+\sqrt{2}-2+\sqrt{6}+\sqrt{2}}{5-2\sqrt{6}-1}\)

\(=\dfrac{2\sqrt{2}}{4-2\sqrt{6}}=\dfrac{1}{\sqrt{2}-\sqrt{3}}=-\sqrt{2}-\sqrt{3}\)

 

28 tháng 7 2023

A) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)

\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)

\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\)

\(\Leftrightarrow\dfrac{3}{2}\sqrt{x-1}=6\)

\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\)

\(\Leftrightarrow x=17\)

Vậy, x=17

 

A: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)

=>5/2*căn x-1-căn x-1=6

=>3/2*căn x-1=6

=>căn x-1=4

=>x-1=16

=>x=17

B:

a: ĐKXĐ: x>=0; x<>1

b: Sửa đề: \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)

=căn x-1+x-căn x+1

=x

17 tháng 12 2023

a) ĐKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\\a\ne4\end{matrix}\right.\)

b) Với \(a>0;a\ne1;a\ne4\), ta có:

\(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ =\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

c)\(B\le\dfrac{1}{3}\rightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\rightarrow\dfrac{-2}{\sqrt{a}}\le0\) (đúng với mọi a thoả ĐKXĐ).

18 tháng 12 2023

a, ĐKXĐ: 

\(\left\{{}\begin{matrix}\left|a\right|>1^2\\\left|a\right|>0\\\left|a\right|>2^2\end{matrix}\right.\Leftrightarrow a>4\)

b,

 \(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ B=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left[\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)\right]}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\\ B=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

\(c,B\le\dfrac{1}{3}\\ \Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\\ \Leftrightarrow3\left(\sqrt{a}-2\right)\le3\sqrt{a}\\ \Leftrightarrow\sqrt{a}-2\le\sqrt{a}\\ \Leftrightarrow\sqrt{a}-\sqrt{a}\le2\\ \Leftrightarrow0\le2\left(luôn.đúng\right)\)

Vậy: Với a>4 thì \(B\le\dfrac{1}{3}\)