\(Cho\) \(A=1+3+3^2+3^3+...+3^{10}\)
\(\)Tìm số tự nhiên n , biết 2A + 1 = \(3^n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+...+3^{2016}+3^{2017}\)
\(3A=3+3^2+3^3+...+3^{2017}+3^{2018}\)
\(3A-A=3^{2018}-1\)
\(2A+1=3^{2018}\)
Vậy n = 2018
3A=3+3^2+3^3+...+3^2018
-A=1+3+3^2+...+3^2017
2A=3^2018-1
khi đó ta có 2A+1=3^2018-1+1=3^2018=3^n
=>n=2018
tui làm b nha do a không biết làm
A=5+32+33+...+32018
3A=15+33+34+...+32019
3A-A=(15+33+34+...+32019)-(5+32+33+...+32018)
2A=32019+15-(5+32)
2A=32019+15-14
2A=32019+1
2A-1=32019+1-1
2A-1=32019
vậy n = 2019
ta có A=1+3+32+33+......+399+3100
=>3A= 3+32+33+34+......+3100+3101
- A=1+3+32+33+.......+399+3100
=> 2A=3101-1 mà 2A+1=3n =>3101-1+1
=> 3101-3n
=> n= 101
k cho mik nha!
\(A=3+3^2+...+3^{2008}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2009}\)
\(\Rightarrow3A-A=3^{2009}-3\)
\(\Rightarrow2A+3=3^{2009}\)
Vậy n = 2009
\(\Rightarrow3A=3+3^2+3^3+...+3^{11}\\ \Rightarrow3A-A=\left(3+3^2+...+3^{11}\right)-\left(1+3+...+3^{10}\right)\\ \Rightarrow2A=3^{11}-1\\ \Rightarrow2A+1=3^{11}=3^n\\ \Rightarrow n=11\)
Ta có: 3A=32+33+...+3101
3A-A=2A=(32+33+...+3101)-(3+32+...+3100)
2A=3101-3
A=\(\frac{3^{101}-3}{2}\)
=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3
=(3101-3)+3
=3101
Mà 2A+3=3n
=>3101=3n
=>n=101
A=3+32+33+...+3100
2A=(3+32+33+...+3100)x2
2A=32+33+34...+3101
2A-A=3101-3
mà 3n=2A+3=3101-3+3=3101
suy ra n=101
\(A=1+3+3^2+3^3+...+3^{10}\)
\(3A=3+3^2+3^3+...+3^{10}+3^{11}\)
\(3A-A=\left(3+3^2+3^3+...+3^{10}+3^{11}\right)-\left(1+3+3^2+3^3+...+3^{10}\right)\)
\(2A=3^{11}-1\Rightarrow2A+1=3^{11}-1+1=3^{11}\)
\(\Rightarrow n=11\)
Ta có : A = 1 + 3 + 32 + 33 + ....... + 310
=> 3A = 3 + 32 + 33 + ....... + 311
=> 3A - A = 311 - 1
=> 2A = 311 - 1
=> 2A + 1 = 311
=> n = 11
Ta có :
\(A=1+3+3^2+...................+3^{10}\)
\(\Leftrightarrow3A=3+3^2+..................+3^{10}+3^{11}\)
\(\Leftrightarrow3A-A=\left(3+3^2+.............+3^{11}\right)-\left(1+3+.................+3^{10}\right)\)
\(\Leftrightarrow2A=3^{11}-1\)
\(\Leftrightarrow2A+1=3^{11}\)
\(\Leftrightarrow3^{11}=3^n\)
\(\Leftrightarrow n=11\left(TM\right)\)
Vậy \(n=11\) là giá trị cần tìm
\(A=1+3+3^2+3^3+...+3^{10}\)
\(3A=3\left(1+3+3^2+3^3+...+3^{10}\right)\)
\(3A=3+3^2+3^3+3^4+...+3^{11}\)
\(A=1+3+3^2+3^3+...+3^{10}\)
\(2A=3^{11}-1\)
\(2A+1=3^{11}\)
Mà \(2A+1=3^n\)
\(\Rightarrow\) n = 11
Vậy n = 11