rút gọn biểu thức
3x^2 - 2x (5 + 1,5x) +10
5x (3x^2 - 12x + 6) + 4x^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(3x^2-2x\left(5+1.5x\right)+10\)
\(=3x^2-10x-3x^2+10\)
\(=-10x+10\)
b. \(\left(x^2-2x+3\right)\left(x-4\right)\)
\(=x^3-2x^2+3x-4x^2+8x-12\)
\(=x^3-6x^2+11x-12\)
c. \(\left(5x+2\right)\left(2x^2-3x-1\right)\)
\(=10x^3-15x^2-5x+4x^2-6x-2\)
\(=10x^3-11x^2-11x-2\)
d. \(\left(25x^2+10xy+4y^2\right)\left(5x+2y\right)\)
\(=125x^3+50x^2y+20xy^2+50x^2y+10xy^2+6y^3\)
\(=125x^3+100x^2y+30xy^2+6y^3\)
e. \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=20x^5-4x^4+2x-12x^2-5x^4+x^3-2x^2+3x+10x^3-2x^2+4x-1\)
\(=20x^5-9x^4+9x-16x^2+11x^3+1\)
1/
a/ \(D=2x\left(10x^2-5x-2\right)-5x\left(4x^2-2x-1\right)\)
\(D=2x\left[10\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)\right]-5x\left[4\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\right]\)
\(D=20x\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)-20x\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\)
\(D=20x^3-10x^2-4x-20x^3+10x^2+5x\)
\(D=x\)
b/ Mình xin sửa lại đề:
Tính giá trị biểu thức \(E\left(x\right)=x^5-13x^4+13x^3-13x^2+13x+2012\)
Tại x = 12
\(E\left(x\right)=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x-1\right)x+2012\)
\(E\left(x\right)=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+2012\)
\(E\left(x\right)=2012-x\)
\(E\left(x\right)=2000\)
2/
a/ \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
<=> \(2x^2-10x-3x-2x^2=26\)
<=> \(-13x=26\)
<=> \(x=-2\)
b/ Bạn vui lòng coi lại đề.
3a/ Ta có \(D=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(D=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
\(D=-10\)
Vậy giá trị của D không phụ thuộc vào x (đpcm)
A=-(3x+7)+(5x-2)+(2x-10)
=-3x-7+5x-2+2x-10
=(-3x+5x+2x)-(7+2+10)
=4x-19
B = (6x+8)-(4x-5)-3x
= 6x+8-4x+5-3x
= (6x-4x-3x) + (8+5)
= -x + 13
= 13-x
C = 2(5x+3) - (2x-1) + 12
= 10x+6 - 2x + 1 + 12
= (10x-2x) + (6+1+12)
= 8x + 19
D = (x+7)-3(x+1)+2x-5
= x+7-3x-3+2x-5
= (x-3x+2x) + (7-3-5)
= -1
a) \(2x\left(5-3x^2\right)-10\left(6+x\right)\)
\(=10x-6x^3-60-10x\)
\(=\) \(-6x^3-60\)
a) \(2x\left(5-3x^2\right)-10\left(6+x\right)\\ =2x.5-2x.3x^2-10.6-10.x\\ =10x-6x^3-60-10x\)
b) \(3\left(-x+2\right)-6\left(1-x+5x^{20}\right)\\ =-3.x+3.2-6.1+6.x-5.5x^{20}\\ =-3x+6-6+6x-25x^{20}=25x^{20}+3x\)
c) \(7x\left(2-5x^2+\dfrac{1}{2}x^3\right)-14x\left(1-2x^2\right)\\ =7x.2-7x.5x^2+7x.\dfrac{1}{2}x^3-14x.1+14x.2x^2\\ =14x-25x^3+\dfrac{7}{2}x^4-14x+28x^3=3x^2+\dfrac{7}{2}x^4\)
\(P\left(x\right)=3x^4+9x^2-2x-3\)
\(Q\left(x\right)=\left(3x^4-3x^4\right)+\left(x^2-4x^2+1.5x^2\right)+2x+1=-1.5x^2+2x+1\)
1, \(3x^2-2x\left(5+1,5x\right)+10\)
= \(3x^2-10x-3x^2+10\)
= \(10-10x\)
= \(10\left(1-x\right)\)
\(\text{a)}3x^2-2x\left(5+1.5x\right)+10\\ =3x^2-10x+3x^2+10\\ =\left(3x^2+3x^2\right)-10x+10\\ =6x^2-10x+10\)
\(\text{b)}5x\left(3x^2-12x+6\right)+4x^3\\ =15x^3-60x^2+30x+4x^3\\ =\left(15x^3+4x^3\right)-60x^2+30x\\ =19x^3-60x^2+30x\)
\(\)
\(\)