Chứng minh bất đẳng thức cô si với 3 số a, b, c không âm:
(dựa vào bất đẳng thức biết x, y, z )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Nếu a ≥ 0, b ≥ 0, c ≥ 0 thì :
Vì a ≥ 0 nên √a xác định, b ≥ 0 nên b xác định
Ta có: a - b 2 ≥ 0 ⇔ a - 2 a b + b ≥ 0
⇒ a + b ≥ 2 a b ⇔ a + b 2 ≥ a b
Dấu đẳng thức xảy ra khi a = b.
\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\frac{a+b}{2}-\sqrt{ab}\ge0\)
\(\Leftrightarrow\frac{a-2\sqrt{ab}+b}{2}\ge0\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\)
Dấu ''='' xảy ra khi a = b
Đặt \(a=x^3,b=y^3,c=z^3\).Áp dụng bất đẳng thức Cô - si với 2 số không âm , ta có
\(\left(x^3+y^3\right)+\left(x^3+xyz\right)\ge2\sqrt{x^3y^3}+2\sqrt{xyz^4}=2\sqrt{xy}\left(xy+z^2\right)\)(1)
\(xy+z^2\ge2\sqrt{xyz^2}=2z\sqrt{xy}\)(2)
Từ (1)(2) \(\Rightarrow x^3+y^3+z^3+xyz\ge2\sqrt{xy}.2z\sqrt{xy}=4xyz\)
\(\Leftrightarrow x^3+y^3+z^3\ge3xyz\)
Vậy \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=z^2\end{cases}\Leftrightarrow x=y=z\Leftrightarrow a=b=c}\)
P/s tham khảo nha
Ta có BĐT cô si:\(a+b\ge2\sqrt{ab}\)(1)
Mặt khác a,b là các số âm nên a+b<0 mà \(2\sqrt{ab}>0\)
\(\Rightarrow a+b< 2\sqrt{ab}\left(2\right)\)
Từ (1) và (2) suy ra vô lý
vậy...............
áp dụng BĐT cô-si ta có:
\(\frac{a+b}{2}=\frac{a}{2}+\frac{b}{2}\)\(\ge2\sqrt{\frac{a}{2}.\frac{b}{2}}=2\frac{\sqrt{a}\sqrt{b}}{\sqrt{4}}=2\frac{\sqrt{ab}}{2}=\sqrt{ab}\)
Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\)
Dấu đẳng thức xảy ra khi a=b=0 hoặc a=b=1
Nếu n= 2, tức có hai giá trị x1 và x2, và từ giả thiết ở trên, ta có:
điều phải chứng minh - ở đây \(x_1=a;x_2=b\)
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)
-Dấu đẳng thức trên xảy ra khi: Trung bình cộng lớn hơn hoặc bằng trung bình nhân
Ta có : \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
Có : \(a,b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )
Vậy ...
\(BĐT\Leftrightarrow\left(a+b+c\right)\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(đúng )
Dấu = xảy ra khi a=b=c