tính tổng A=\(\dfrac{3}{5}+\dfrac{3}{5^2}+\dfrac{3}{5^3}+...+\dfrac{3}{5^{201}}\)
B=\(1^3+2^3+3^3+...+2017^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)
\(B=\dfrac{2\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)
\(B=\dfrac{2}{3}:\dfrac{4}{5}\) ( Do \(\left\{{}\begin{matrix}1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\ne0\\1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\ne0\end{matrix}\right.\))
\(B=\dfrac{2}{3}\cdot\dfrac{5}{4}=\dfrac{2\cdot5}{3\cdot4}=\dfrac{5}{6}\)
\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)
\(\Rightarrow\)\(B=\dfrac{2-\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)
\(\Rightarrow B=\dfrac{2}{3}:\dfrac{4}{5}=\dfrac{10}{12}=\dfrac{5}{6}\)
Bài 7: Tính
a) \(4\dfrac{2}{5}\times8\dfrac{3}{4}-2\dfrac{3}{4}\)
\(=\dfrac{22}{5}\times\dfrac{35}{4}-\dfrac{11}{4}\)
\(=\dfrac{77}{2}-\dfrac{11}{4}\)
\(=\dfrac{143}{4}\)
b) \(2\dfrac{2}{3}+1\dfrac{2}{5}-\dfrac{2}{15}\)
\(=\dfrac{8}{3}+\dfrac{7}{5}-\dfrac{2}{15}\)
\(=\dfrac{47}{15}-\dfrac{2}{15}\)
\(=\dfrac{45}{15}=3\)
c) \(3\dfrac{1}{3}-2\dfrac{2}{3}+1\dfrac{5}{6}\)
\(=\dfrac{10}{3}-\dfrac{8}{3}+\dfrac{11}{6}\)
\(=\dfrac{2}{3}+\dfrac{11}{6}\)
\(=\dfrac{15}{6}\)
a, \(5\dfrac{4}{13}.15\dfrac{3}{41}-5\dfrac{4}{13}.2\dfrac{3}{41}\)
\(=\left(15\dfrac{3}{41}-2\dfrac{3}{41}\right).\dfrac{69}{13}=\dfrac{13.69}{13}=69\)
b, \(\dfrac{2^3}{3^3}:\dfrac{16}{27}+\dfrac{2017}{2018}-\dfrac{1}{2}.2017^0\)
\(=\dfrac{8}{27}:\dfrac{16}{27}+\dfrac{2017}{2018}-\dfrac{1}{2}.1=\dfrac{1}{2}+\dfrac{2017}{2018}-\dfrac{1}{2}=\dfrac{2017}{2018}\)
c, \(3:\left(-\dfrac{3}{2}\right)^2+\dfrac{1}{9}.\sqrt{36}=3:\dfrac{9}{4}+\dfrac{1}{9}.6=\dfrac{4}{3}+\dfrac{2}{3}=\dfrac{6}{3}=2\)
\(3\dfrac{1}{2}+4\dfrac{5}{7}-5\dfrac{5}{14}\)
= \(\dfrac{7}{2}+\dfrac{33}{7}-\dfrac{75}{14}\)
= \(\dfrac{49}{14}+\dfrac{66}{14}-\dfrac{75}{14}\)
= \(\dfrac{40}{14}=\dfrac{20}{7}\)
\(4\dfrac{1}{2}+\dfrac{1}{2}\div5\dfrac{1}{2}\)
=\(\dfrac{9}{2}+\dfrac{1}{2}\div\dfrac{11}{2}\)
=\(\dfrac{9}{2}+\dfrac{1}{2}\times\dfrac{2}{11}\)
=\(\dfrac{9}{2}+\dfrac{1}{11}\)
=\(\dfrac{101}{22}\)
\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)
\(x\times\dfrac{10}{3}=\dfrac{10}{3}\div\dfrac{17}{4}\)
\(x\times\dfrac{10}{3}=\dfrac{10}{3}\times\dfrac{4}{17}\)
\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)
\(x=\dfrac{40}{51}\div\dfrac{10}{3}\)
\(x=\dfrac{40}{51}\times\dfrac{3}{10}\)
\(x=\dfrac{120}{510}=\dfrac{12}{51}=\dfrac{4}{7}\)
\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{11}{3}-\dfrac{5}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\times\dfrac{6}{7}\)
\(x=\dfrac{102}{21}=\dfrac{34}{7}\)
a) S = 1.2 + 2.3 + 3.4 + ... + 99.100
S có thể được viết lại thành:
S = 1(2 - 0) + 2(3 - 1) + 3(4 - 2) + ... + 99(100 - 98)
= 1.2 - 0 + 2.3 - 1 + 3.4 - 2 + ... + 99.100 - 98
= (1.2 + 2.3 + 3.4 + ... + 99.100) - (0 + 1 + 2 + ... + 98)
Để tính tổng 1.2 + 2.3 + 3.4 + ... + 99.100, ta sử dụng công thức:
S = n(n+1)(2n+1)/6
Với n = 99, ta có:
S = 99.100.199/6 = 331650
Tính tổng 0 + 1 + 2 + ... + 98, ta sử dụng công thức:
S = n(n+1)/2
Với n = 98, ta có:
S = 98.99/2 = 4851
Do đó, S = 331650 - 4851 = 326799
b) B = 4924.12517.28−530.749.45529.162.748
B có thể được viết lại thành:
B = (4924.12517.28) / (530.749.45529.162.748)
B = (4924 / 530) . (12517 / 749) . (28 / 45529) . (162 / 162) . (748 / 748)
B = 9.17.28/45529 = 2^2 . 3^2 . 17 / 45529
B = 108 / 45529
c) C = (13+132+133+134).35+(135+136+137+138).39+...+(1397+1398+1399+13100).3101
C = (13(1 + 13 + 13^2 + 13^3)) . 3^5 + (13^5(1 + 13 + 13^2 + 13^3)) . 3^9 + ... + (13^97(1 + 13 + 13^2 + 13^3)) . 3^101
C = (1 + 13 + 13^2 + 13^3) . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)
C = 80 . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)
C = 80 . (13^5 . 3^4 . 3 + 13^9 . 3^8 . 3 + ... + 13^97 . 3^96 . 3)
C = 80 . (13^6 . 3^5 + 13^10 . 3^9 + ... + 13^98 . 3^97)
C = 80 . 3^5 (13^6 + 13^10 + ... + 13^98)
d) D = 3 - 3^2 + 3^3 - 3^4 + ... + 3^2017 - 3^2018
D = (3 - 3^2) + (3^3 - 3^4) + ... + (3^
` a/`
` 2 - 1 5/6 + 2 2/3 = 2 - 11/6 - 8/3 = 1/6+ 8/3 = 1/6 + 16/6 = 17/6 `
`b/`
`5/9 xx ( 2 5/6 - 1 2/3 ) = 5/9 xx ( 17/6 - 5/3 ) = 5/9 xx 7/6 = 35/54 `
`c/`
` 1 1/3 : ( 2 + 1 1/6 : 2 5/6 ) `
`= 4/3 : ( 2 + 7/6 : 17/6 ) `
`= 4/3 : ( 2 + 7/6 xx 6/17 )`
`= 4/3 : ( 2 + 7/17 ) `
`= 4/3 : ( 34/17 + 7/17 ) `
`= 4/3 : 41/17 `
`= 4/3 xx 17/41 `
`= 68/123`
` d/`
` 2 3/5 : 3/4 xx 1 4/5 = 13/5 xx 4/3 xx 9/5 =52/15 xx 9/5 = 156/25`
a) \(...=\dfrac{19}{8}:\dfrac{15}{4}x\dfrac{8}{3}=\dfrac{19}{8}x\dfrac{4}{15}x\dfrac{8}{3}=\dfrac{76}{45}\)
b) \(...=\dfrac{3}{2}:\dfrac{7}{3}:\dfrac{17}{6}=\dfrac{3}{2}x\dfrac{3}{7}x\dfrac{6}{17}=\dfrac{27}{119}\)
c) \(...=\dfrac{14}{3}-\dfrac{7}{4}:\dfrac{12}{5}=\dfrac{14}{3}-\dfrac{7}{4}x\dfrac{5}{12}=\dfrac{14}{3}-\dfrac{35}{48}=\dfrac{14x16}{48}-\dfrac{35}{48}=\dfrac{224}{48}-\dfrac{35}{48}=\dfrac{189}{48}=\dfrac{63}{16}\)
\(a,2\dfrac{3}{8}:3\dfrac{3}{4}\times2\dfrac{2}{3}\\ =\dfrac{2\times8+3}{8}:\dfrac{3\times4+3}{4}\times\dfrac{2\times3+2}{3}\\ =\dfrac{19}{8}:\dfrac{15}{4}\times\dfrac{8}{3}\\ =\dfrac{19\times4\times8}{8\times15\times3}=\dfrac{76}{45}\)
\(b,1\dfrac{1}{2}:\dfrac{7}{3}:2\dfrac{5}{6}\\ =\dfrac{3}{2}:\dfrac{7}{3}:\dfrac{2\times6+5}{6}\\ =\dfrac{3}{2}\times\dfrac{3}{7}\times\dfrac{6}{17}\\ =\dfrac{54}{238}=\dfrac{27}{119}\)
\(c,4\dfrac{2}{3}-1\dfrac{3}{4}:2\dfrac{2}{5}\\ =\dfrac{4\times3+2}{3}-\dfrac{1\times4+3}{4}:\dfrac{2\times5+2}{5}\\ =\dfrac{14}{3}-\dfrac{7}{4}:\dfrac{12}{5}\\ =\dfrac{14}{3}-\dfrac{7}{4}.\dfrac{5}{12}\\ =\dfrac{14}{3}-\dfrac{35}{48}\\ =\dfrac{14\times16-35}{48}=\dfrac{189}{48}=\dfrac{63}{16}\)