K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{x\left(x+2\right)}=1\dfrac{2009}{2011}\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{4020}{4022}\)

\(\Rightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{4020}{4022}\)

\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{4020}{4022}\)

\(\Rightarrow1-\dfrac{1}{x+2}=\dfrac{4020}{4022}\)

\(\Rightarrow\dfrac{1}{x+2}=\dfrac{1}{2011}\)

\(\Rightarrow x+2=2011\Rightarrow x=2009\)

Vậy x = 2009

a) Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)

\(\Leftrightarrow\dfrac{2\left(2x+1\right)}{12}-\dfrac{3\left(x-2\right)}{12}=\dfrac{4\left(3-2x\right)}{12}-\dfrac{12x}{12}\)

\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)

\(\Leftrightarrow x+8-12+20x=0\)

\(\Leftrightarrow21x-4=0\)

\(\Leftrightarrow21x=4\)

\(\Leftrightarrow x=\dfrac{4}{21}\)

Vậy: \(S=\left\{\dfrac{4}{21}\right\}\)

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

Hình như em viết công thức bị lỗi rồi. Em cần chỉnh sửa lại để được hỗ trợ tốt hơn!

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Lời giải:

Xét PT(1):

\(\Leftrightarrow \frac{x-2013}{2011}+1+\frac{x-2011}{2009}+1=\frac{x-2009}{2007}+1+\frac{x-2007}{2005}+1\)

\(\Leftrightarrow \frac{x-2}{2011}+\frac{x-2}{2009}=\frac{x-2}{2007}+\frac{x-2}{2005}\)

\(\Leftrightarrow (x-2)\left(\frac{1}{2011}+\frac{1}{2009}-\frac{1}{2007}-\frac{1}{2005}\right)=0\)

Dễ thấy $\frac{1}{2011}+\frac{1}{2009}-\frac{1}{2007}-\frac{1}{2005}\neq 0$ nên $x-2=0$

$\Rightarrow x=2$Xét $(2)$:\(\Leftrightarrow \frac{(x-2)(x+m)}{x-1}=0\)

Để $(1);(2)$ là 2 PT tương đương thì $(2)$ chỉ có nghiệm $x=2$

Điều này xảy ra khi $x+m=x-1$ hoặc $x+m=x-2\Leftrightarrow m=-1$ hoặc $m=-2$

1 tháng 3 2021

Akai Haruma Giáo viên, mk không hiểu tại sao lại có m=-1, m=-2 vào nữa, mk tưởng với mọi m chứ??

 

AH
Akai Haruma
Giáo viên
17 tháng 1 2019

Câu 1:

\(A=21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)=21a+\frac{21}{b}+3b+\frac{3}{a}\)

\(=(\frac{a}{3}+\frac{3}{a})+(\frac{7b}{3}+\frac{21}{b})+\frac{62}{3}a+\frac{2b}{3}\)

Áp dụng BĐT Cô-si:
\(\frac{a}{3}+\frac{3}{a}\geq 2\sqrt{\frac{a}{3}.\frac{3}{a}}=2\)

\(\frac{7b}{3}+\frac{21}{b}\geq 2\sqrt{\frac{7b}{3}.\frac{21}{b}}=14\)

Và do $a,b\geq 3$ nên:

\(\frac{62}{3}a\geq \frac{62}{3}.3=62\)

\(\frac{2b}{3}\geq \frac{2.3}{3}=2\)

Cộng tất cả những BĐT trên ta có:

\(A\geq 2+14+62+2=80\) (đpcm)

Dấu "=" xảy ra khi $a=b=3$

AH
Akai Haruma
Giáo viên
17 tháng 1 2019

Câu 2:

Bình phương 2 vế ta thu được:

\((x^2+6x-1)^2=4(5x^3-3x^2+3x-2)\)

\(\Leftrightarrow x^4+12x^3+34x^2-12x+1=20x^3-12x^2+12x-8\)

\(\Leftrightarrow x^4-8x^3+46x^2-24x+9=0\)

\(\Leftrightarrow (x^2-4x)^2+6x^2+24(x-\frac{1}{2})^2+3=0\) (vô lý)

Do đó pt đã cho vô nghiệm.

28 tháng 2 2021

`(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005`

`<=>(x-2013)/2011+1+(x-2011)/2009+1=(x-2009)/2007+1+(x-2007)/2005+1`

`<=>(x-2)/2011+(x-2)/2009=(x-2)/2007+(x-2)/2005`

`<=>(x-2)(1/2011+1/2009-1/2007-1/2005)=0`

`<=>x-2=0`

`<=>x=2`

PT tương đương khi cả 2 PT có cùng nghiệm

`=>(x^2-(2-m).x-2m)/(x-1)` tương đương nếu nhận `x=2` là nghiệm

Thay `x=2`

`<=>(4-(2-m).2-2m)/(2-1)=0`

`<=>4-4+2m-2m=0`

`<=>0=0` luôn đúng.

Vậy phương trình `(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005` và `(x^2-(2-m).x-2m)/(x-1)` luôn tương đương với nha `forall m`

28 tháng 2 2021

\(\left(1\right)\Leftrightarrow\dfrac{x-2013}{2011}+1+\dfrac{x-2011}{2009}+1=\dfrac{x-2009}{2007}+1+\dfrac{x-2007}{2005}+1\)

\(\Leftrightarrow\dfrac{x-2}{2011}+\dfrac{x-2}{2009}-\dfrac{x-2}{2007}-\dfrac{x-2}{2005}=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

(1) và (2) tương đương khi và chỉ khi (1) và (2) có cùng tập nghiệm khi và chỉ khi (2) có nghiệm duy nhất x = 2

<=> x2 - (2 - m)x - 2m = 0 có nghệm kép x = 2 (3) hoặc x2 - (2 - m)x - 2m = 0 có 2 nghiệm x = 1 và x = 2

Giải (3) ta có: \(\left\{{}\begin{matrix}\Delta=\left[-\left(2-m\right)\right]^2+8m=0\\2^2-2\left(2-m\right)-2m=0\end{matrix}\right.\)

<=> m2 + 4m + 4 = 0

<=> (m + 2)2 = 0

<=> m = -2

Giải (4) ta có:

\(\left\{{}\begin{matrix}2^2-2\left(2-m\right)-2m=0\\1^2-\left(2-m\right)-2m=0\end{matrix}\right.\)

<=> -m - 1 = 0

<=> m = -1

Vậy có 2 giá trị của m thoả mãn là -2 và -1

 

23 tháng 8 2018

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2011}{2013}\)

\(\Rightarrow2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2011}{2013}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2011}{4026}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2011}{4026}\)

\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2013}\)

\(\Rightarrow x+1=2013\)

\(\Rightarrow x=2012\)

Chúc hok dốt!

30 tháng 8 2018

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4020}{2011}\)

\(\Rightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4020}{2011}\)

\(\Rightarrow\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4020}{2011}\)

\(\Rightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{4020}{2011}\)

\(\Rightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{4020}{2011}:2\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2010}{2011}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2010}{2011}\)

\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2010}{2011}\)

\(\Rightarrow\dfrac{1}{x+1}=-\dfrac{2009}{4022}\)

\(\Rightarrow4022=-2009\left(x+1\right)\)

\(\Rightarrow4022=-2009x-2009\)

\(\Rightarrow2009x=-2009-4022\)

\(\Rightarrow2009x=-6031\)

\(\Rightarrow x=-\dfrac{6031}{2009}\)

8 tháng 11 2018

câu 1 \(A=\dfrac{3^2}{5^2}.5^2-\dfrac{9^3}{4^3}:\dfrac{3^3}{4^3}+\dfrac{1}{2}\)

\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{\left(3^2\right)^3}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}\)

\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{3^6}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}=3^2-3^3+\dfrac{1}{2}=-18+\dfrac{1}{2}=-\dfrac{35}{2}\)

\(B=\left[\dfrac{4}{11}+\dfrac{7}{22}.2\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{4^4}{8^2}\right)^{2009}\)

\(B=\left[\dfrac{4}{11}+\dfrac{7}{11}\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{\left(2^2\right)^4}{\left(2^3\right)^2}\right)^{2009}\)

\(B=1^{2010}-\left(\dfrac{1}{2^2}.\dfrac{2^8}{2^6}\right)^{2009}\)

\(B=1^{2010}-\left(\dfrac{2^8}{2^8}\right)^{2009}\)

\(B=1^{2010}-1^{2009}=1-1=0\)

8 tháng 11 2018

câu 2

a) \(2x-\dfrac{5}{4}=\dfrac{20}{15}\)

\(\Leftrightarrow2x=\dfrac{4}{3}+\dfrac{5}{4}\)

\(\Leftrightarrow2x=\dfrac{31}{12}\)

\(\Leftrightarrow x=\dfrac{31}{24}\)

b) \(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)

\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)

\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}\)

\(\Leftrightarrow x=-\dfrac{5}{6}\)

17 tháng 3 2018

a/ \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^{10}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^9}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+......+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{10}}\)

b/ \(\dfrac{1}{5.8}+\dfrac{1}{8.11}+.......+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)

\(\Leftrightarrow3\left(\dfrac{1}{5.8}+\dfrac{1}{8.11}+......+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{101}{1540}.3\)

\(\Leftrightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+......+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+.....+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)

\(\Leftrightarrow x+3=308\)

\(\Leftrightarrow x=305\)

Vậy ..

c/ \(1+\dfrac{1}{3}+\dfrac{1}{6}+........+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{2007}{2009}\)

\(\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{6}+.......+\dfrac{1}{x\left(x+1\right):2}\right)=\dfrac{4016}{2009}.\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+......+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)

\(\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2009}\)

\(\Leftrightarrow x+1=2009\)

\(\Leftrightarrow x=2008\)

Vậy ..

17 tháng 3 2018

bài 1:

A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

ta thấy 2A=\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^9}\)

=>2A-A=\(1-\dfrac{1}{2^{10}}=\dfrac{1023}{1024}\)