K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

Ta có x² + x + 1 
= x² + x + 4/4 
= x² + x + 1/4 + 3/4 
= (x² + x + 1/4) + 3/4 
= (x² + 2.x.(1/2) + (1/2)² ) + 3/4 
= (x + 1/2)² + 3/4 
Do (x + 1/2) ≥ 0 ∀ x ∈ R 
=> (x + 1/2)² + 3/4 ≥ 3/4 > 0 ∀ x ∈ R 
=> x² + x + 1 > 0 ∀ x ∈ R 
=> đpcm

8 tháng 5 2016

Ta có x² + x + 1 
= x² + x + 4/4 
= x² + x + 1/4 + 3/4 
= (x² + x + 1/4) + 3/4 
= (x² + 2.x.(1/2) + (1/2)² ) + 3/4 
= (x + 1/2)² + 3/4 
Do (x + 1/2) ≥ 0 ∀ x ∈ R 
=> (x + 1/2)² + 3/4 ≥ 3/4 > 0 ∀ x ∈ R 
=> x² + x + 1 > 0 ∀ x ∈ R 
=> đpcm

 Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0. 
Nếu f(a) = 0 => a là nghiệm của f(x). 
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x. 
+ Thay x = 0 vào (1) ta được 
0.f(0 + 1) = (0 + 2).f(0) 
=> 0 = 2.f(0) 
=> f(0) = 0 
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2) 

+ Thay x = -2 vào (1) ta được: 
(-2).f(-2 + 1) = (-2 + 2).f(-2) 
=> (-2).f(-1) = 0.f(-2) 
=> (-2).f(-1) = 0 
=> f(-1) = 0 
=> x = -1 là 1 nghiệm của đa thức trên (3) 
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2

4 tháng 4 2018

:  Delta = (-5)^2 - 4.1.1 = 21 - 80 = -59 . Vì Delta < 0 nên đa thức x^2 - 5x + 1 vô nghiệm

4 tháng 4 2018

Ta có: \(x^2+5x^2+1\)

\(=x^2+\frac{5}{2}x^2+\frac{5}{2}x^2+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2+1\)

\(=x\left(x^2+\frac{5}{2}\right)+\frac{5}{2}\left(x^2+\frac{5}{2}\right)-\frac{21}{4}\)

\(=\left(x^2+\frac{5}{2}\right)\left(x^2+\frac{5}{2}\right)-\frac{21}{4}\)

\(=\left(x^2+\frac{5}{2}\right)^2-\frac{21}{4}\)

Ta có:\(\left(x^2+\frac{5}{2}\right)^2\ge0\)

\(\Rightarrow\left(x^2+\frac{5}{2}\right)^2-\frac{21}{4}\le0\)

Vậy đa thức trên không có nghiệm

8 tháng 1 2021

a) 2(x+1)=3.2x

<=> 2x + 2 = 3 + 2x

<=> 2x - 2x = 3-2

<=> 0x = 1 => pt vô nghiệm.

b)2(1-1,5x)+3x=0

<=> 2 - 3x = -3x 

<=> 2 = -3x + 3x => pt vô nghiệm.

 

4 tháng 5 2017

Do x^4 và 4x^2 lớn hơn hoặc bằng 0 vs mọi x => x^4 + 4x^2 + 1 > 0 => đa thức f(x) =..... vô nghiệm

5 tháng 5 2017

\(f\left(x\right)=x^4+4x^2+1=\left(x^4+4x^2+4\right)-3=\left(x^2+2\right)^2-3\)

Vì \(x^2\ge0\Rightarrow x^2+2\ge0\Rightarrow\left(x^2+2\right)^2\ge4\Rightarrow f\left(x\right)=\left(x^2+2\right)^2-3\ge1>0\)

Vậy f(x) vô nghiệm

27 tháng 12 2018

Chieu nay nhe

27 tháng 12 2018

troi oi anh oi kho nhu vay lam sao ma lam duoc vay de hay la em len hoi thay giao em nhe thay em chinh la bo cua em day va bo em chinh la hieu pho cua truong thcs doan ket