K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

CMR: $n$ là tổng của 2 số chính phương liên tiếp. - Số học - Diễn đàn Toán học

a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :

TH1 : \(2n-1=3u^2;2n+1=v^2\)

TH2 : \(2n-1=u^2;2n+1=3v^2\)

TH1 :

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )

Còn lại TH2 cho ta \(2n-1\)là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)

TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )

13 tháng 4 2021

Cho mình hỏi ở chỗ câu b): Vì sao 2n-1=3p^2 và 2n+1=q^2 vậy ạ?

6 tháng 10 2021

a) Từ giả thiếtta có thể đặt :  \(n^2-1=3m\left(m+1\right)\)  với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\) nên dẫn đến :

 \(TH1:2n-1=3u^2;2n+1=v^2\)

\(TH2:2n-1=u^2;2n+1=3v^2\)

\(TH1:\)

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2=2\left(mod3\right)\)

Còn lại TH2 cho ta  \(2n-1\) là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

\(TH1:\Rightarrow\hept{\begin{cases}2n-1=3p^2\\2n+1=3q\end{cases}}\)

\(TH2:\Rightarrow\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ  \(PT\Leftrightarrow q^2=3p^2+2=2\left(mod3\right)\) ( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ  \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\) ( dpcm )

13 tháng 11 2022

 ơ kìa, sao biết 2n - 1 và 2n + 1 nguyên tố cùng nhau

30 tháng 11 2019

2. Gọi 4 số TN liên tiếp lần lượt là :a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ( a thuộc N)

Ta có : a + a + 1 + a + 2 + a + 3 + a + 4 = a + a + a + a + 1 + 2 +3 + 4 = 4a + 6

Vì 4a chia hết cho 2 ; 6 chia hết cho 2 nên 4a + 6 chia hết cho 2

Vì 4a chia hết cho 4 ; 6 không chia hết cho 4 nên 4a + 6 không chia hết cho 4

Do đó tổng của 4 số TN liên tiếp chia hết cho 2 nhưng không chia hết cho 22

Do đó tổng của 4 số TN liên tiếp không là số chính Phương

Học tốt 🐱

2 tháng 7 2021

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

10 tháng 1 2020

hello

25 tháng 7 2016

Gọi 4 số tự nhiên chẵn liên tiếp đó lần lượt là x; x+2; x+4; x+6. Ta có:

x(x+2)(x+4)(x+6) + 16

= x(x+6)(x+2)(x+4) + 16

= ( x2 + 6x)( x2+6x+8) + 16 (*)

Đặt x2 + 6x= a. Thay vào (*) ta lại có

(*) = a (a+8) + 16= a2 + 8a + 16= ( a+4)2

Thay a= x2 + 6x vào ta có:

(*)= ( x2 + 6x + 4)2

Do x là số tự nhiên nên \(x^2+6x+4\) cũng là một số tự nhiên.

Vậy tổng của tích 4 số tự nhiên chẵn liên tiếp với 16 là 1 số chính phương

16 tháng 9 2018

BÀI GIẢI 
Gọi 4 số liên tiếp là 2a ; 2a + 2 ; 2a + 4 ; 2a + 6. 
Tích của chúng là 2a(2a + 2)(2a + 4)(2a + 6) 
Ta có : 
A = 2a(2a + 2)(2a + 4)(2a + 6) + 16 
A = (4a^2 +4a)(4a^2 + 12a + 8a + 24) + 16 
A = (4a^2 +4a)(4a^2 + 20a + 24) + 16 
A = 16a^4 + 80a^3 + 96a^2 + 16a^3 + 80a^2 + 96a +16 
A = 16a^4 + 96a^3 + 176a^2 + 96a +16 
A = 16a^4 + 48a^3 + 16a^2 + 48a^3 + 144a^2 + 48a + 16a^2 + 48a +16 
A = (4a^2 + 12a + 4)(4a^2 + 12a + 4) 
A = (4a^2 + 12a + 4)^2 (1) 

Vì a thuộc N nên 4a^2 + 12a + 4 thuộc N (2) 

(1)(2)=> A là số chính phương 
=> Đpcm