Tìm x,y biết:
x\(^2\)+2y\(^2\)+2xy-2y+1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ (x^2-4x+4)+(y^2+2y+1)=0
<=> (x-2x)^2+(y+1)^2 = 0 Vậy x=2 và y = -1
b/ (x^2+2xy+y^2) + ( y^2-2y+1) = 0
<=> (x+y)^2 + (y-1)^2 = 0 Vậy x=y=1
a) { x^2 - 4x +4 } +{y^2+2x+1}=0
<=>{ x - 2x}^2+{y+1}^2=0 Vậy x =2 vầy =-1
b) { x^2 +2xy +y^2} +{y^2 - 2y +1=0}
<=> {x+y}^2+{ y - 1 }^2 =0 Vậy x=y=1.
NHA BẠN!
a) \(2x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)
Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)
b)\(x^2+3y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)
nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Mà\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
nên pt vô nghiệm
\(x^2+2y^2+2xy-2y+1=0\)
\(\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
\(x^2+2y^2+2xy-2y+1=0\)
\(\Rightarrow x^2+2xy+y^2+y^2-2y+1=0\)
\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-y\left(1\right)\\y=1\end{cases}}\)
Từ (1) ta được x=-1;y=1
Ta có : x2 - 4x + y2 + 2y + 5 = 0
<=> (x2 - 4x + 4) + (y2 + 2y + 1) = 0
<=> (x - 2)2 + (y + 1)2 = 0
Mà (x - 2)2 \(\ge0\forall x\)
(y + 1)2 \(\ge0\forall x\)
Nên \(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-0\end{cases}}\)
x2 + 2y2 + 2xy - 2y + 2 = 0
<=> (x2 + 2xy + y2) + (y2 - 2y + 1) + 1 = 0
<=> (x + y)2 + (y - 1)2 = -1
*) (x + y)2 \(\ge\)0 ; (y - 1)2 \(\ge\)0
=> (x + y)2 + (y - 1)2 \(\ge\)0
Vậy không tồn tại nghiệm x, y
Mình làm câu đầu tượng trưng thui nhé, 2 câu sau tương tự vậy !!!!!!
a) pt <=> \(x^2-2xy+2y^2-2x-2y+5=0\)
<=> \(\left(x-y-1\right)^2+y^2-4y+4=0\)
<=> \(\left(x-y-1\right)^2+\left(y-2\right)^2=0\) (1)
TA LUÔN CÓ: \(\left(x-y-1\right)^2;\left(y-2\right)^2\ge0\forall x;y\)
=> \(\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DẤU "=" SẼ PHẢI XẢY RA <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
VẬY \(\left(x;y\right)=\left(3;2\right)\)
=> x^3 + 8y^3 = 0 (1)
và x^3 - 8y^3 = 16 (2)
Từ (1) và (2) => 2x^3 = 16 => x^3 = 8 => x = 2
Thay x^3 = 8 và (1) ta có 8 + 8y^3 = 0 => 8y^3 = -8 => Y^3 = -1 => y = -1
VẬy x = 2 ; y = -1
\(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+y^2+y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
vì \(\left(x+y\right)^2\ge0;\left(y-1\right)^2\ge0\)nên
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
\(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2\ge0\)
Mà \(\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy x = -1, y = 1