Giải phương trình sau
Sin8x + cos8x = 1\8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
\(\Leftrightarrow12\left(x+1\right)-8\left(x-1\right)=x^2-1\)
\(\Leftrightarrow x^2-1=12x+12-8x+8\)
\(\Leftrightarrow x^2-1=4x+20\)
\(\Leftrightarrow x^2-4x-21=0\)
=>(x-7)(x+3)=0
=>x=7(nhận) hoặc x=-3(nhận)
(x – 1)(5x + 3) = (3x – 8)(x – 1)
⇔ (x – 1)(5x + 3) – (3x – 8)(x – 1) = 0
⇔ (x – 1)[(5x + 3) – (3x – 8)] = 0
⇔ (x – 1)(5x + 3 – 3x + 8) = 0
⇔ (x – 1)(2x + 11) = 0 ⇔ x – 1 = 0 hoặc 2x + 11 = 0
x – 1 = 0 ⇔ x = 1
2x + 11 = 0 ⇔ x = -5,5
Vậy phương trình có nghiệm x = 1 hoặc x = -5,5
Bài 3:
b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)
hay \(x\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
=>x-1=0
hay x=1
d: \(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
3(x-1).(2x+1) - 5(x+8)(x-1)=0
(3(2x+1)-5(x+8)).(x-1)=0
(6x+3-5x-40).(x-1)=0
(x-37)(x-1)=0
=>x=37 hoac x =1
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
Bài 4 :
24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ
Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0
Suy ra quãng đường AB là 36x(km)
Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)
Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)
Ta có phương trình:
\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)
Vậy quãng đường AB dài 36.2 = 72(km)
bạn xem mình giải đc chưa nhé^^
ta có: sin2x + cos2x = 1
=> sin4x + cos4x = (sin2x + cos2x)2 - 2sin2x. cos2x
= 1 - 2sin2x. cos2x
=> sin8x +cos8x = ( sin4x + cos4x)2 - 2sin4x. cos4x
= 1+ 2sin4x. cos4x - 4sin2x. cos2x
= 1+ 2sin2x. cos2x. (sin2x. cos2x -2)
= 1+ \(\dfrac{sin^22x}{2}\). (\(\dfrac{sin^22x}{4}-2\))
-Đặt t = sin22x (đk: 0< t<1 )
=>phương trình đã cho có dạng:
1+ \(\dfrac{t}{2}.\left(\dfrac{t}{4}-2\right)\)=\(\dfrac{1}{8}\)
<=> 8 + t2 -8t = 1
<=> t2 - 8t +7=0
=> (t- 1)(t- 7)= 0
=>\(\left[{}\begin{matrix}t=1\left(tm\right)\\t=7\left(l\right)\end{matrix}\right.\)
Với t=1, trở lại cách đặt được sin22x =1
=>\(\left\{{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{-\pi}{4}+k\pi\end{matrix}\right.\) ( k \(\in\) Z).