cm rang : m3-m chia het cho 6 voi m thuoc z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : n(n+5)−(n−3)(n+2)=n2+5n−(n2+2n−3n−6)n(n+5)−(n−3)(n+2)=n2+5n−(n2+2n−3n−6)
=n2+5n−n2−2n+3n+6=6n+6=6(n+1)⋮6=n2+5n−n2−2n+3n+6=6n+6=6(n+1)⋮6
⇔6(n+1)⇔6(n+1) chia hết cho 66 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2)⇔n(n+5)−(n−3)(n+2) chia hết cho 66 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2)n(n+5)−(n−3)(n+2) chia hết cho 66 với mọi n là số nguyên (đpcm)
a) n có 2 trường hợp
Với n = 2k +1 ( k thuộc Z)
=> (2k+1+6) . (2k+1+7)
= (2k + 7) .( 2k + 8)
= (2k + 7) . 2.(k+4) (chia hết cho 2) ( 1 )
Với n = 2k
=> (2k + 6) . ( 2k + 7)
= 2. (k+3) . ( 2k + 7) ( chia hết cho 2) (2 )
Từ 1 và 2
=> moi n thuoc Z thi
(n+6)x(n+7) chia het cho 2
a) + Nếu n lẻ thì n + 7 chẵn => n + 7 chia hết cho 2 => (n + 6).(n + 7) chia hết cho 2
+ Nếu n chẵn thì n + 6 chẵn => n + 6 chia hết cho 2=> (n + 6).(n + 7) chia hết cho 2
=> (n + 6).(n + 7) luôn chia hết cho 2
Nói ngặn gọn hơn là: Do (n + 6).(n + 7) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2
b) n2 + n + 3
= n.(n + 1) + 3
Vì n.(n + 1) là tích 2 số tự nhiên nên chia hết cho 2; 3 không chia hết cho 2
=> n2 + n + 3 không chia hết cho 2
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
m3-m=m.(m2-1)=m.(m+1)(m-1)
Vì m;m+1 là 2 số nguyên liên tiếp nên:
m.(m+1) chia hết cho 2
Vì m-1;m;m+1 là 3 số nguyên liên tiếp nên:
m.(m+1).(m-1) chia hết cho 3
=>m.(m+1)(m-1) chia hết cho 6
=>m3-m chia hết cho 6 với mọi m thuộc Z