rút gọn hộ mình
:\(\dfrac{3+\sqrt{21}}{1+\sqrt{7}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{2\sqrt{x}+7}{x-4}\right)\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\left(\dfrac{x+2\sqrt{x}-x+\sqrt{x}+2-2\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-5}\)
\(=\dfrac{-x+8\sqrt{x}-15+\left(x-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{-x+8\sqrt{x}-15+x\sqrt{x}-2x-4\sqrt{x}+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{x\sqrt{x}-3x+4\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)
\(ĐK:x\ge0;x\ne4\\ P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\dfrac{x+2\sqrt{x}-x+\sqrt{x}+2-2\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-5}\\ P=\dfrac{\left(3-\sqrt{x}\right)\left(\sqrt{x}-5\right)+\left(x-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\\ P=\dfrac{8\sqrt{x}-15-x+x\sqrt{x}-2x-4\sqrt{x}+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\\ P=\dfrac{x\sqrt{x}-3x+4\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)
\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2\sqrt{2}}{\sqrt{2}+1}-\left(3+\sqrt{3}-2\sqrt{2}\right)\\ =\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{2\sqrt{2}\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-3-\sqrt{3}+2\sqrt{2}\\ =\sqrt{3}+2+\dfrac{4-2\sqrt{2}}{2-1}-3-\sqrt{3}+2\sqrt{2}\\ =-1+2\sqrt{2}+\dfrac{4-2\sqrt{2}}{1}\\ =-1+2\sqrt{2}+4-2\sqrt{2}\\ =3\)
\(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\)
\(=\sqrt{5}+\dfrac{\sqrt{5}}{2}\)
\(=\dfrac{2\sqrt{5}+\sqrt{5}}{2}\)
\(=\dfrac{3\sqrt{5}}{2}\)
\(D=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{x-1}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\\ D=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\\ D=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+7}{4-x}\left(x>0;x\ne4\right)\\ P=\dfrac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\\ P=\dfrac{\sqrt{x}+6-x-x-3\sqrt{x}-2+2\sqrt{x}+7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\sqrt{x}}\\ P=\dfrac{-2x+11}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\sqrt{x}}\\ P=\dfrac{-2x\sqrt{x}+11\sqrt{x}+\left(\sqrt{x}+2\right)\left(x-4\right)}{\sqrt{x}\left(x-4\right)}\)
\(P=\dfrac{-2x\sqrt{x}+11\sqrt{x}+x\sqrt{x}-4\sqrt{x}+2x-8}{\sqrt{x}\left(x-4\right)}\\ P=\dfrac{-x\sqrt{x}+8\sqrt{x}+2x-8}{\sqrt{x}\left(x-4\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(x-1\right)^2}{2}\\ =\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\\ =\dfrac{-2\sqrt{x}\left(\sqrt{x}-1\right)}{2}=\sqrt{x}\left(1-\sqrt{x}\right)\)
\(ĐK:x>0;x\ne4\\ B=\dfrac{\sqrt{x}+2}{\sqrt{x}}\cdot\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\\ B=\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\\ B=\dfrac{x+2\sqrt{x}+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ B=\dfrac{x+4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}}\cdot\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+3\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+4\sqrt{x}}{x-4}\)
\(ĐK:x\ge0;x\ne4\\ P=\dfrac{5x+10\sqrt{x}-\left(3-\sqrt{x}\right)\left(\sqrt{x}-2\right)-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{5x+10\sqrt{x}-5\sqrt{x}+6+x-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{5\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{5\sqrt{x}}{\sqrt{x}-2}-\dfrac{3-\sqrt{x}}{\sqrt{x}+2}+\dfrac{6x}{4-x}\left(đk:x\ge0,x\ne4\right)\)
\(=\dfrac{5\sqrt{x}\left(\sqrt{x}+2\right)-\left(3-\sqrt{x}\right)\left(\sqrt{x}-2\right)-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{5x+10\sqrt{x}+x-5\sqrt{x}+6-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{5\sqrt{x}+6}{x-4}\)
ĐKXĐ: \(x\ge0;x\ne3\)
\(B=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3\sqrt{x}-3}{x-9}\)
5: \(=\dfrac{1}{x-y}\cdot x^3\cdot\left(x-y\right)^2=x^3\left(x-y\right)\)
\(\dfrac{3+\sqrt{21}}{1+\sqrt{7}}=\dfrac{\left(3+\sqrt{21}\right)\left(1-\sqrt{7}\right)}{-6}=\dfrac{3-3\sqrt{7}+\sqrt{21}-\sqrt{147}}{-6}\\ =\dfrac{3-3\sqrt{7}+\sqrt{21}-7\sqrt{3}}{-6}=-\dfrac{3-3\sqrt{7}+\sqrt{21}-7\sqrt{3}}{6}\)
tớ nghĩ cái này đã tối giản......