1.Chứng minh rằng biểu thức n(2n-3)-2n(n+1)luôn chia hết cho 5 với mọi số nguyên n. 2.Biết số tự nhiên a chia cho 5 dư 4.Chứng minh rằng a2chia cho 5 dư 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Bài 1:
Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)
b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)
\(\Rightarrow ab\equiv2\left(mod3\right)\)
Vậy ab chia cho 3 dư 2
Cách 2: ( hướng dẫn)
a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )
Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh
Bài 2:
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n⋮5\)
Vậy \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\left(đpcm\right)\)
Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=\left(2n^2-2n^2\right)-\left(3n+2n\right)\)
\(=-5n⋮5\forall n\inℕ\left(đpcm\right)\)
Rất vui vì giúp đc bạn <3
1)Từ giả thiết ta biểu diễn a,b như sau: a= 3p +1 , b =3q +2 p,q là các số tự nhiên suy ra : ab = (3p+1)(3q+2) = 3(3pq + 2p +2q ) + 2 nếu đặt 3pq +2p+2q = x ab=3x+2 suy ra ab: 3 dư 2
Bài 1 :
Ta có :
a chia 3 dư 1 ⇒a=3k+1
b chia 3 dư 2 ⇒b=3k1+2 (k;k1∈N)
ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2
Mà 3k.k1+2.3k+3.k1⋮3
⇒3k.k1+2.3k+3.k1+2 chia 3 dư 2
⇒ab chia 3 dư 2 →đpcm
Bài 2 :
Ta có :
n(2n−3)−2n(n+1)
=2n2−3n−2n2−2n
=−5n⋮5
⇒n(2n−3)−3n(n+1)⋮5 với mọi n
→đpcm
Bài 1:
a=3n+1
b= 3m+2
a*b= 3( 3nm+m+2n ) + 2 số này chia 3 sẽ dư 2.
Bài 2:
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
= -5n
-5n chia hết cho 5 với mọi số nguyên n vì -5 chia hết cho 5
vậy n(2n-3)-2n(n+1) chia hết cho 5
Ta có: n(2n – 3) – 2n(n + 1) = 2 n 2 – 3n – 2 n 2 – 2n = - 5n
Vì -5 ⋮ 5 nên -5n ⋮ 5 với mọi n ∈ Z .
Bài 1:
Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-\left(2n^2-2n\right)\\ =2n^2-3n-2n^2+2n=5n\)
Vì \(5⋮5\) nên \(5n⋮5\)
Do đó \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\) (đpcm)
Chúc bạn học tốt!!!
Bài 2:
Theo bài ra ta có:
\(a=5k+4\)
\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)
Vì \(25⋮5;40⋮5\) ; 16 chia cho 5 dư 1 nên
\(25k^2+40k+16\) chia cho 5 dư 1
Do đó \(a^2\) chia cho 5 dư 1 (đpcm)
Chúc bạn học tốt!!!