Cứu mình với
Tìm GTLN x^2 + 2x + 5
Tìm GTLN 2x - x^2 -4
( 6h30 sáng mai mình đi học rùi )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> 2x^2 +x-4x-2-5x-15=2x^2-6x+4+8x-2-2x
2x^2-8x-17-2x^2-2=0
-8x-19=0
x=-19/8
Ta có: \(A=\frac{2x^2-16x+33}{x^2-8x+17}=\frac{\left(2x^2-16x+34\right)-1}{x^2-8x+17}\)
\(=2-\frac{1}{x^2-8x+17}\)
Ta thấy rằng A bé nhất khi x2 - 8x + 17 bé nhất
x2 - 8x + 17 = (x2 - 8x + 16) + 1 = (x - 4)2 + 1\(\ge1\)
=> x2 - 8x + 17 bé nhất = 1 khi x = 4
Vậy A bé nhất bằng 2 - 1 = 1 khi x = 4
GTNN:A=X2+2X+5
=>A=5
5=X2+2X+5
=>X2+2X=0
=>X=0
GTLN:M=4-/5x-2/-/3-y/
M=4-/5.0-2/-/ 3-3/
M=4-2-0=2
N=5-2x-x2
N =5-2*0-02
N=5
Mik nghĩ vậy còn bạn sao thì ko bít
A) \(A=-3x^2+x+1\)
\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)
\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)
\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)
Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)
Dấu "=" xảy ra khi:
\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)
Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)
B) \(B=2x^2-8x+1\)
\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(B=2\left(x-2\right)^2-7\)
Mà: \(2\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu "=" xảy ra khi:
\(x-2=0\Rightarrow x=2\)
Vậy: \(B_{min}=2.khi.x=2\)
Ta co:\(P=-x^2+2x+5\)
\(P=-\left(x^2-2x+1\right)+6\)
\(P=-\left(x-1\right)^2+6\)
Do \(\left(x-1\right)^2\ge0\)\(\Rightarrow-\left(x-1\right)^2\le0\)
\(\Rightarrow P\ge6\)
Dau ''='' xay ra khi va chi khi
\(\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
Vay MAX cua P=6 khi x=1
\(x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x+1\right)^2+4\ge4\)Vậy GTNN của biểu thức là 4 khi \(x+1=0\Rightarrow x=-1\)
\(b,2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\)Vậy GTLN của biểu thức là -3 khi \(x-1=0\Rightarrow x=1\)
a) Đặt \(A=x^2+2x+5\)
\(A=\left(x^2+2.x.1+1^2\right)+4\)
\(A=\left(x+1\right)^2+4\)
Ta có : \(\left(x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x+1\right)^2+4\ge4\)
Vậy \(Min_A=4\Leftrightarrow x=-1.\)
b ) Đặt \(B=2x-x^2-4\)
\(B=-x^2+2x-4\)
\(B=-\left(x^2-2x+4\right)\)
\(B=-\left(x^2-2.x.1+1^2\right)+3\)
\(B=-\left(x-1\right)^2-3\)
Ta có : \(\left(x-1\right)^2\ge0\forall x\)
\(\Leftrightarrow-\left(x-1\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-1\right)^2-3\le-3\)
Vậy \(Max_B=-3\Leftrightarrow x=1.\)