K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x:3-24=4

=>x:3=24+4

=>x=28.3

=>x=84

Vậy x=84

x:3-24=4

=>x:3=4+24

=>x:3=28

=>x=28.3

=>x=84

Dấu chấm thay dấu nhân

9 tháng 1 2018

1, 54 : x - 1 = 5

54 : x = 5+1 = 6

x = 54 : 6 = 9

2, 42 : x + 0 = 8

x = 42 : 8 = 21/4

3, 24 : x - 8 = 0

24 : x = 0 + 8 = 8

x = 24 : 8 = 3

Tk mk nha

9 tháng 1 2018

1) 54:x-x:x=3x2-1

    54:x-  1 =6-1

    54:x-   1=5

    54:x      =6

         x=54:6=9

              

11 tháng 6 2018

                                Trả lời :

           \(x+3\frac{1}{4}+x=24\frac{1}{4}\)

           \(x+\frac{13}{4}+x=\frac{97}{4}\)

          \(x\text{ x 2 }+\frac{13}{4}=\frac{97}{4}\)

         \(x\text{ x 2 }=\frac{97}{4}-\frac{13}{4}\)

         \(x\text{ x 2 }=\frac{84}{4}=21\)

        \(x=21:2\)

        \(x=10,5\)

11 tháng 6 2018

\(x+3\frac{1}{4}+x=24\frac{1}{4}\)

\(\Rightarrow2x+\frac{13}{4}=\frac{97}{4}\)

\(\Rightarrow2x=21\)

\(\Rightarrow x=\frac{21}{2}\)

7 tháng 8 2017

\(\dfrac{24}{x}:\dfrac{8}{3}=\dfrac{3}{5}\)

\(\dfrac{24}{x}=\dfrac{3}{5}.\dfrac{8}{3}\)

\(\dfrac{24}{x}=\dfrac{8}{5}\)

\(\dfrac{24}{x}=\dfrac{24}{15}\)

=>x=5

Vậy x=5

7 tháng 8 2017

\(x+3\dfrac{1}{2}+x=24\dfrac{1}{4}\)

\(\left(x+x\right)+3\dfrac{1}{2}=24\dfrac{1}{4}\)

\(x.2+\dfrac{7}{2}=\dfrac{97}{4}\)

\(x.2=\dfrac{97}{4}-\dfrac{7}{2}\)

\(x.2=\dfrac{97}{4}-\dfrac{14}{4}\)

\(x.2=\dfrac{83}{4}\)

\(x=\dfrac{83}{4}:2\)

\(x=\dfrac{83}{4}.\dfrac{1}{2}\)

\(x=\dfrac{83}{8}\)

\(x=10\dfrac{3}{8}\)

13 tháng 3 2017

6 tháng 9 2019

5 x 6 = 30       2 x 6 = 12        3 x 6 = 18        4 x 6 = 24

6 x 5 = 30       6 x 2 = 12        6 x 3 = 18        6 x 4 = 24

21 tháng 12 2020

Tính nhẩm:

5 x 6 = 30       2 x 6 = 12        3 x 6 = 18        4 x 6 = 24

6 x 5 = 30       6 x 2 = 12        6 x 3 = 18        6 x 4 = 24

30 : 6 = 5       12 : 6 = 2         18 : 6 = 3         24 : 6 = 4

30 : 5 = 6       12 : 2 = 6         18 : 3 = 6         24 : 4 = 6

Học tốt <3

7 tháng 8 2017

a.24/x:8/3=3/5

suy ra :24/x=8/5

suy ra:x=15

b. x=35/8

7 tháng 8 2017

a)        \(\frac{24}{x}:\frac{8}{3}=\frac{3}{5}\)                        \(\frac{24}{x}=\frac{3}{5}.\frac{8}{3}\)                                                                                                                                          \(\frac{24}{x}=\frac{8}{5}\)                              \(x=24.5:8\)                \(x=15\)

b) Đề bài sai rồi 

           

2 tháng 2 2017

Học sinh nhẩm và ghi:

8 x 5 = 40

8 x 4 = 32

8 x 6 = 48

8 x 3 = 24

40 : 8 = 5

32 : 8 = 4

48 : 8 = 6

24 : 8 = 3

40 : 5 = 8

32 : 4 = 8

48 : 6 = 8

24 : 3 = 8

(chú ý: mối quan hệ giữa nhân và chia)

4 tháng 3 2022

Tính nhẩm:

8 x 5 = 40

8 x 4 = 32

8 x 6 = 48

8 x 3 = 24

40 : 8 = 5

32 : 8 = 4

48 : 8 = 6

24 : 8 = 3

40 : 5 = 8

32 : 4 = 8

48 : 6 = 8

24 : 3 = 8

30 tháng 9 2016

mong cac ban tra loi chu minh cung muon tim ket qua cua cau nay lam

24 tháng 7 2020

Bài làm:

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+5=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

\(=\left(x^2+5x+5\right)^2\)

b) Tương tự như a phân tích và đặt ra được: \(t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)

c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+11=t\)\(\Rightarrow\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

d) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

24 tháng 7 2020

Làm mẫu cho 1 vd:

a, (x+1)(x+2)(x+3)(x+4)+1

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(1)

Đặt \(y=x^2+5x+5\)

Khi đó ::

(1) = \(\left(y-1\right)\left(y+1\right)+1\)

\(=y^2-1+1=y^2\)

Thay vào ta được: \(\left(x^2+5x+5\right)^2\)

29 tháng 2 2020

a) \(4\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow2^2\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow\left(2x+6\right)^2=\left(2x+6\right)^2\)

Vậy tập nghiệm của phương trình là \(S=ℝ\)

b) \(\left(3x+4\right)^2=4\left(x+3\right)\)

\(\Leftrightarrow9x^2+24x+16=4x+12\)

\(\Leftrightarrow9x^2+20x+4=0\)

\(\Leftrightarrow\left(9x+2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}9x+2=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{9}\\x=-2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{9};-2\right\}\)

c) \(\left(6x+3\right)^2=\left(x-4\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}6x+3=x-4\\6x+3=4-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x+7=0\\7x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{5}\\x=\frac{1}{7}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{7}{5};\frac{1}{7}\right\}\)

d) \(\left(x^2+3x+2\right)\left(x^2+3x+3\right)-2=0\)

Đặt \(t=x^2+3x+2\), ta có :

     \(t\left(t+1\right)-2=0\)

\(\Leftrightarrow t^2+t-2=0\)

\(\Leftrightarrow\left(t+2\right)\left(t-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+3x+4=0\\x^2+3x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\\\left(x+\frac{3}{2}\right)^2-1,25=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\sqrt{1,25}-\frac{3}{2}=-\frac{3\pm\sqrt{5}}{2}\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{3\pm\sqrt{5}}{2}\right\}\)

29 tháng 2 2020

e)Đề bài sai ! Mik sửa :

 \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

Đặt \(t=x^2-5x\), ta có :

       \(t^2+10t-24=0\)

\(\Leftrightarrow\left(t+12\right)\left(t-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+12=0\\t-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+12=0\\x^2-5x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2+\frac{23}{4}=0\left(ktm\right)\\\left(x-\frac{5}{2}\right)^2-\frac{33}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\frac{\sqrt{33}}{2}+\frac{5}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{\sqrt{33}}{2}+\frac{5}{2};-\frac{\sqrt{33}}{2}+\frac{5}{2}\right\}\)

f) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+2\right)-12=0\)

Đặt \(t=x^2+x+1\), ta có :

    \(t\left(t+1\right)-12=0\)

\(\Leftrightarrow t^2+t-12=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+5=0\\x^2+x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}-\frac{1}{2}=1\left(tm\right)\\x=-\frac{3}{2}-\frac{1}{2}=-2\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)

g) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt \(t=x^2+x\), ta có :

     \(t\left(t-2\right)-24=0\)

\(\Leftrightarrow t^2-2t-24=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}-\frac{1}{2}=2\left(tm\right)\\x=-\frac{5}{2}-\frac{1}{2}=-3\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-3\right\}\)

h) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(t=x^2+5x+4\), ta có :

     \(t\left(t+2\right)-24=0\)

\(\Leftrightarrow t^2+2t-24=0\)

\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+5x+10=0\\x^2+5x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\x\left(x+5\right)=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-5\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;-5\right\}\)