K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

A B C H M L P Q R .

GIẢ SỬ TAM GIÁC PQR LÀ TAM GIÁC ĐỀU

TA CÓ GÓC PRQ = 60

=> GÓC BMC + GÓC ACB = 120

=> GÓC BMC + GÓC \(\frac{ACB}{2}=120\)

=> GÓC BMC = \(120-\frac{ACB}{2}\)

NỐI HM

DO HM LÀ ĐƯỞNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN CỦA TAN GIÁC AHC VUÔNG TAI H

=> MH = AM = MC

=> GÓC HMC = 180 - 2 . GÓC ACB   VÀ   GÓC MHA = GÓC HAC = 90 - GÓC ACB

=> GÓC BMH = GÓC BMC - GÓC HMC = \(120-\frac{ACB}{2}-180+2.ACB\)

DO GÓC QPR = 60

=> GÓC MHA + GÓC BMH = 120

=> 90 - GÓC ACB + 120 - \(\frac{ACB}{2}-180+2.ACB=120\)

=> 30 + \(\frac{ACB}{2}=120\)

=> GÓC ACB = 90 . 2 = 180 ( VÔ LÍ )

VẬY TAM GIÁC PQR KHÔNG THỂ LÀ TAM GIÁC ĐỀU

                                                            

29 tháng 7 2017

A B C H M L P Q R 1 2

Cách 2:

Giả sử \(\Delta\)PQR là tam giác đều \(\Rightarrow\)^QPR=^PRQ=^PQR=600.

Xét \(\Delta\)PHC: ^PHC=900 \(\Rightarrow\)^C2=900-^QPR=300

Do CL là phân giác trong của ^ACB \(\Rightarrow\)^C1=^C2=300\(\Rightarrow\)^ACB=600 (1)

Ta có: ^PRQ=^MRC=600 (Đối đỉnh).

Xét \(\Delta\)RMC: ^RMC=1800-(^MRC+^C1)=1800-900=900 \(\Rightarrow\)RM\(⊥\)AC hay BM\(⊥\)AC

\(\Rightarrow\)BM là đường trung tuyến đồng thời là đường cao của \(\Delta\)ABC\(\Rightarrow\)\(\Delta\)ABC cân tại B (2)

Từ (1) và (2) \(\Rightarrow\)\(\Delta\)ABC đều \(\Rightarrow\)AB=BC=AC (Mâu thuẫn với đề bài)

\(\Rightarrow\)Giả sử là Sai. Vậy nên \(\Delta\)PQR không thể là tam giác đều.

31 tháng 12 2022

Xét ΔABM có AHvừa là đường cao, vừa là phân giác

nên ΔABM cân tại A

=>H là trung điểm của BM

Xét ΔAHC có AM là phân giác

nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2

Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2

nên góc ACH=30 độ

=>góc HAC=60 độ

=>góc BAH=1/2*góc HAC=30 độ

=>góc BAC=90 độ

=>ΔABC vuông tại A

Xét ΔABC vuông tại A có góc B+góc C=90 độ

=>góc B=60 độ

mà ΔAMB cân tại A

nên ΔAMB đều

31 tháng 10 2023

Xét ΔABM có AHvừa là đường cao, vừa là phân giác

nên ΔABM cân tại A

=>H là trung điểm của BM

Xét ΔAHC có AM là phân giác

nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2

Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2

nên góc ACH=30 độ

=>góc HAC=60 độ

=>góc BAH=1/2*góc HAC=30 độ

=>góc BAC=90 độ

=>ΔABC vuông tại A

Xét ΔABC vuông tại A có góc B+góc C=90 độ

=>góc B=60 độ

mà ΔAMB cân tại A

nên

     
31 tháng 10 2023

Xét ΔABM có AHvừa là đường cao, vừa là phân giác

nên ΔABM cân tại A

=>H là trung điểm của BM

Xét ΔAHC có AM là phân giác

nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2

Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2

nên góc ACH=30 độ

=>góc HAC=60 độ

=>góc BAH=1/2*góc HAC=30 độ

=>góc BAC=90 độ

=>ΔABC vuông tại A

Xét ΔABC vuông tại A có góc B+góc C=90 độ

=>góc B=60 độ

mà ΔAMB cân tại A

nên ΔAMB đều

    2 tháng 1 2017 lúc 21:06