Rút gọn rồi tính giá trị biểu thức với x = \(\dfrac{-1}{2}\)
A = 5x2 - ( 4x2 - 3x . (x - 20)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có P = 5 x 2 − [ 4 x 2 − 3 x ( x − 2 ) ]
= 5 x 2 – (4 x 2 – 3 x 2 + 6x) = 5 x 2 – ( x 2 + 6x)
= 5 x 2 – x 2 – 6x = 4 x 2 – 6x
Thay x = − 3 2 vào biểu thức P = 4 x 2 – 6x ta được
P = 4. ( − 3 2 ) 2 − 6. ( − 3 2 ) = 4. 9 4 + 18 2 = 18
Vậy P = 4 x 2 – 6x. Với x = − 3 2 thì P = 18
Đáp án cần chọn là: A
\(a,P=\left(5x^2-2xy+y^2\right)-\left(x^2+y^2\right)-\left(4x^2-5xy+1\right)\\ =5x^2-2xy+y^2-x^2-y^2-4x^2+5xy-1\\ =\left(5x^2-x^2-4x^2\right)+\left(y^2-y^2\right)+\left(-2xy+5xy\right)-1\\ =3xy-1\)
\(x+y=6,2\\ \Rightarrow y=6,2-1,2=5\)
Thay \(x=1,2;y=5\)
\(\Rightarrow3.5.1,2-1=17\)
`P = 5x^2 - x^2 - 4x^2 - 2xy + 5xy + y^2 - y^2 - 1`
`= 3xy - 1`
Thay `x = 1,2; y = 6,2 - 1,2 = 5` vào
`3 xx 1,2 xx 5-1 = 18 - 1 = 17`
a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)
\(=\left(3x-2+3x+2\right)^2\)
\(=36x^2\)(1)
Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:
\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)
b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left(x+y-7-y+6\right)^2\)
\(=\left(x-1\right)^2=100^2=10000\)
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)
\(\dfrac{8-2x}{x^2+x-20}=-\dfrac{2\left(4-x\right)}{\left(4-x\right)\left(x+5\right)}=\dfrac{-2}{x+5}\)
Để biểu thức trên nhận giá trị dương khi
\(x+5< 0\)do -2 < 0
\(\Leftrightarrow x< -5\)
a: \(A=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right)\cdot\dfrac{x+2}{6}\)
\(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x+2}{6}=\dfrac{-6}{6}\cdot\dfrac{1}{x-2}=\dfrac{-1}{x-2}\)
b: x=2 ko thỏa mãn ĐKXĐ
=>Loại
Khi x=3 thì A=-1/(3-2)=-1
c: A=2
=>x-2=-1/2
=>x=3/2
Ta có:
\(A=5x^2-\left[4x^2-3x\left(x-20\right)\right]\)
\(\Leftrightarrow A=5x^2-\left[4x^2-\left(3x^2-60x\right)\right]\)
\(\Leftrightarrow A=5x^2-\left(4x^2-3x^2+60x\right)\)
\(\Leftrightarrow A=5x^2-\left(x^2+60x\right)\)
\(\Leftrightarrow A=5x^2-x^2-60x\)
\(\Leftrightarrow A=4x^2-60x\)
Thay \(x=-\dfrac{1}{2}\) vào biểu thức \(A=4x^2-60x\), ta được:
\(A=4\cdot\left(-\dfrac{1}{2}\right)^2-60\cdot\dfrac{-1}{2}=4\cdot\dfrac{1}{4}+30=31\)
\(A=5x^2-\left[4x^2-3x\left(x-20\right)\right]=5x^2-\left(4x^2-3x^2+60x\right)=5x^2-4x^2+3x^2-60x=4x^2-60x\)Với \(x=\dfrac{-1}{2}\Rightarrow A=4.\left(\dfrac{-1}{2}\right)^2-60.\left(\dfrac{-1}{2}\right)=31\)