cho tam giác ABC có AB< AC, phân giác AD, trung tuyến AM đường cao AH
a) so sánh độ dài HB và HC
b) chứng minh rằng HÂC > 1/2 Â
c) nhận xét gì về vị trí của các tia AH; AD; AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có AB<AC(gt)
mà HB là hình chiếu của AB trên BC(gt)
và HC là hình chiếu của AC trên BC(gt)
nên HB<HC
c) tia AD nằm giữa hai tia AH và AM
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hbh
=>CD=AB
=>CD>AC
=>góc CAD>góc ADC
b: Xét ΔABC có AC<AB
mà HC,HB lần lượt là hình chiếu của AC,AB trên BC
nên HC<HB
Xét ΔECB có
HC<HB
HC,HB lần lượt là hình chiếu của EC,EB trên BC
=>EC<EB
Δ AMB và Δ AMC có: AM chung MB =MC và AC > AB
=> AMC^ > AMB^ => M thuộc CH.(M ở giữa C và H)
AB<AC => B^ > C^ => BAH^ < CAH^ => D thuộc CH.(1)
theo tính chất phân giác:
BD/AB = CD/AC
mà: AC > AB => CD > BD => D thuộc BM (2)
(1) và (2) => D thuộc HM hay D là điểm nằm giữa H và M.
c. Vì AB < AC ⇒ HB < HC (quan hệ giữa hình chiếu và đường xiên) (1 điểm)
Vì HB < HC ⇒ BE < EC (quan hệ giữa hình chiếu và đường xiên) (1 điểm)
a )
Ta có :
\(AC>AB\Rightarrow HC>HB\) ( quan hệ đường xiên và hình chiếu )
b )
Xét vào hình ta thấy :
\(HAC>DAC\)
\(\Rightarrow HAC>\dfrac{1}{2}BAC\)