K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

A B C H D M

a )

Ta có :

\(AC>AB\Rightarrow HC>HB\) ( quan hệ đường xiên và hình chiếu )

b )

Xét vào hình ta thấy :

\(HAC>DAC\)

\(\Rightarrow HAC>\dfrac{1}{2}BAC\)

a) Xét ΔABC có AB<AC(gt)

mà HB là hình chiếu của AB trên BC(gt)

và HC là hình chiếu của AC trên BC(gt)

nên HB<HC

c) tia AD nằm giữa hai tia AH và AM

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hbh

=>CD=AB

=>CD>AC

=>góc CAD>góc ADC

b: Xét ΔABC có AC<AB

mà HC,HB lần lượt là hình chiếu của AC,AB trên BC

nên HC<HB

Xét ΔECB có

HC<HB

HC,HB lần lượt là hình chiếu của EC,EB trên BC

=>EC<EB

21 tháng 2 2018

Giải bài 57 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

- Nhận xét: D luôn nằm giữa H và M.

- Chứng minh:

Giải bài 57 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 4 2017

Giải bài 57 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

- Nhận xét: D luôn nằm giữa H và M.

- Chứng minh:

Giải bài 57 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 3 2018

Δ AMB và Δ AMC có: AM chung MB =MC và AC > AB
=> AMC^ > AMB^ => M thuộc CH.(M ở giữa C và H)
AB<AC => B^ > C^ => BAH^ < CAH^ => D thuộc CH.(1)
theo tính chất phân giác:
BD/AB = CD/AC
mà: AC > AB => CD > BD => D thuộc BM (2)
(1) và (2) => D thuộc HM hay D là điểm nằm giữa H và M.

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE =...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm, 
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7

Gì nhiều vậy???

 

29 tháng 9 2019

c. Vì AB < AC ⇒ HB < HC (quan hệ giữa hình chiếu và đường xiên) (1 điểm)

Vì HB < HC ⇒ BE < EC (quan hệ giữa hình chiếu và đường xiên) (1 điểm)