Tìm các số nguyên x và y biết rằng :
a) (x-2)(2y+1) = 8
b) (8-x)(4y+1)=20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Với $x,y$ nguyên thì $x-2, 2y+1$ nguyên.
Mà $(x-2)(2y+1)=8$ nên $2y+1$ là ước của $8$
$2y+1$ lẻ nên $2y+1=1$ hoặc $2y+1=-1$
Nếu $2y+1=1\Rightarrow x-2=8$
$\Rightarrow y=0; x=10$
Nếu $2y+1=-1\Rightarrow x-2=-8$
$\Rightarrow y=-1; x=-6$
b.
$8-x, 4y+1$ là số nguyên. Mà $(8-x)(4y+1)=20$ nên $4y+1$ là ước của $20$.
Mà $4y+1$ chia $4$ dư $1$ nên $4y+1\in \left\{1; 5\right\}$
Nếu $4y+1=1$ thì $8-x=20$
$\Rightarrow y=0; x=-12$
Nếu $4y+1=5$ thì $8-x=4$
$\Rightarrow y=1; x=4$
1) Gọi 2 số là a và b, ta có: Tổng 2 số và tích 2 số đối nhau nên:
a + b = -ab
<=> a + b + ab = 0
<=> a + ab + b + 1 = 1
<=> a (b + 1) + (b + 1) = 1
<=> (b + 1) (a + 1) = 1
Mà 1 = 1 . 1 = (-1) . (-1) nên các trường hợp là:
a + 1 = 1 và b + 1 = 1 => a = b = 0
a + 1 = -1 và b + 1 = -1 => a = b = -2
2)a) vì 8 = 8.1 = 1.8 = 2.4 = 4.2
Vì 2y + 1 là số lẻ nên chỉ có 1 phương án là:
2y + 1 = 1 và x - 2 = 8 => y = 0 và x = 10
2b) 20 = 20 . 1 = 1 . 20 = 2.10 = 10.2 = 4.5 = 5.4
Mà 4y + 1 là số lẻ nên chỉ có thể có 2 trường hợp sau:
+) 4y + 1 = 1 và 8 - x = 20 => y = 0 và x = -12
+) 4y + 1 = 5 và 8 - x = 4 => y = 1 và x = 4
1. Gọi số cần tìm là xy (x,y thuộc Z)
Ta có: x+y=xy
=> x-xy+y=0
=> x(1-y)+y-1=-1
=> x(1-y)-(1-y)=-1
=> (x-1)(1-y)=-1
=> x-1, 1-y thuộc Ư(-1)={-1,1}
Ta có bảng sau:
x-1 | -1 | 1 |
1-y | 1 | -1 |
x | 0 | 2 |
y | 0 | 2 |
Vậy (x,y)=(0,0);(2,2)
2)a) vì 8 = 8.1 = 1.8 = 2.4 = 4.2
Vì 2y + 1 là số lẻ nên chỉ có 1 phương án là:
2y + 1 = 1 và x - 2 = 8 => y = 0 và x = 10
2b) 20 = 20 . 1 = 1 . 20 = 2.10 = 10.2 = 4.5 = 5.4
Mà 4y + 1 là số lẻ nên chỉ có thể có 2 trường hợp sau:
+) 4y + 1 = 1 và 8 - x = 20 => y = 0 và x = -12
+) 4y + 1 = 5 và 8 - x = 4 => y = 1 và x = 4
a) vì 8 = 8.1 = 1.8 = 2.4 = 4.2
Vì 2y + 1 là số lẻ nên chỉ có 1 phương án là:
2y + 1 = 1 và x - 2 = 8 => y = 0 và x = 10
2b) 20 = 20 . 1 = 1 . 20 = 2.10 = 10.2 = 4.5 = 5.4
Mà 4y + 1 là số lẻ nên chỉ có thể có 2 trường hợp sau:
+) 4y + 1 = 1 và 8 - x = 20 => y = 0 và x = -12
+) 4y + 1 = 5 và 8 - x = 4 => y = 1 và x = 4
a, (3 - \(x\))(4y + 1) = 20
Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
Lập bảng ta có:
\(3-x\) | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
\(x\) | 23 | 13 | 8 | 7 | 5 | 4 | 2 | 1 | -1 | -2 | -7 | -17 |
4\(y\) + 1 | -1 | -2 | -4 | -5 | -10 | -20 | 20 | 10 | 5 | 4 | 2 | 1 |
\(y\) | -1/2 | -3/4 | -5/4 | -6/4 | -11/4 | -21/4 | 19/4 | 9/4 | 1 | 3/4 | 1/4 | 0 |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) =(-1; 1); (-17; 0)
b, \(x\left(y+2\right)\)+ 2\(y\) = 6
\(x\) = \(\dfrac{6-2y}{y+2}\)
\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2
⇒ 10 ⋮ \(y\) + 2
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(y+2\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(y\) | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
\(x=\) \(\dfrac{6-2y}{y+2}\) | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
Theo bảng trên ta có các cặp \(x;y\)
nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\) ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)
a, \(\left(x-2\right)\left(2y+1\right)=8\)
\(\Rightarrow x-2;2y+1\inƯ\left(8\right)\)
\(\Rightarrow x-2;2y+1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Ta có bảng sau:
Vậy......
Câu b làm tương tự! Chúc bạn học tốt!!
Ta có
(x - 2)(2y + 1) = 8
Vì x, y \(\in\) Z => (x - 2);(2y + 1) \(\in\) Z
=> x - 2; 2y + 1 \(\in\) Ư(8) = {1;2;4;8;-1;-2;-4;-8}
Ta có bảng
Vậy cặp số x, y = (10,0) ;(-6;-1)