Tìm x :
( 4x + 1 )( 16x216x2 - 4x + 1 ) - 16x ( 4x24x2 - 5 ) = 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x+1\right)\left(1-4x+16x^2\right)-16x\left(4x^2-5\right)=17\)
\(\Leftrightarrow4x-16x^2+64x^2+1-4x+16x^2-64x^2+80x-17=0\)
\(\Leftrightarrow\left(-16x^2+16x^2\right)+\left(64x^2-64x^2\right)+\left(4x-4x\right)+80x+1-17=0\)
\(\Leftrightarrow80x=16\)
\(\Leftrightarrow x=\dfrac{1}{5}\)
Thứ nhất: Làm chi tiết ra k dc ạ?
Thứ 2: Kết quả sai. Xem lại.
\(p=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+2010\)\(=\left(x^3+1\right)+x-\left(x^3-1\right)+2010=x^3+1+x-x^3+1+2010=x+2012\)Với \(x=-2010\Rightarrow p=-2010+2012=2\)
\(q=16x\left(4x^2-5\right)-\left(4x+1\right)\left(16x^2-4x+1\right)=64x^3-80x-64x^3-1=-80x-1\)Với \(x=\dfrac{1}{5}\Rightarrow q=-80.\dfrac{1}{5}-1=-17\)
giải
5x-(4-2x+x^2)(x+2)+x(x-1)(x+1)=0
5x-(4x+8-2x^2-4x+x^3+2x^2)+x(x^2-1)=0
5x-4x-8+2x^2+4x-x^3-2x^2+x^3-1x=0
(5x-4x+4x-1x)+(-8)+(2x^2-2x^2)+(-x^3+x^3)=0
4x+(-8)=0
4x=0+8
4x=8
x=8:4
x=2
D)(4x+1)(16x^2-4x+1)-16x(4x^2-5)=17
64x^3-16x^2+4x+16x^2-4x+1-64x^3+80x=17
80x+1=17
80x=17-1
80x=16
x=1/5
b) \(\left(4x+1\right)\left(16x^2-4x+1\right)-16x\left(4x^2-5\right)=17\)
\(\Leftrightarrow64x^3+1-64x^3+80x=17\)
\(\Leftrightarrow80x=16\)
\(\Leftrightarrow x=\frac{1}{5}\)
16x (4x²-5) + 17 = (4x + 1) (16x²-4x + 1)
64x³-80x + 17 = 64x³ + 1
64x³-64x³ = 1-17-80x
-80x = -16
x = -16 / ( -80)
x = 0,2
\(\left(4x+1\right)\left(-4x+1\right)-16x\left(-5\right)=17\)
\(\Leftrightarrow\left(1+4x\right)\left(1-4x\right)+80x-17=0\)
\(\Leftrightarrow1-16x^2+80x-17=0\)
\(\Leftrightarrow-16x^2-16+80x=-16\left(x^2-5x+1\right)=0\Leftrightarrow-16\left[\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{21}{4}\right]=0\Leftrightarrow-16\left(x-\dfrac{5}{2}\right)^2+84=0\Rightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{21}{4}\) \(\Rightarrow\left[{}\begin{matrix}x-\dfrac{5}{2}=\sqrt{\dfrac{21}{4}}\\x-\dfrac{5}{2}=-\sqrt{\dfrac{21}{4}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{21}{4}}+\dfrac{5}{2}\\x=-\sqrt{\dfrac{21}{4}}+\dfrac{5}{2}\end{matrix}\right.\)