1. Cho tam giác ABC cân tại A. Đường cao BH và CK cắt nhau ở M
a) CM: BH=CK
b) tam giác BMC cân
c) KH//BC
d) Trên tia đối của tia CA lấy N sao cho: CH=CN. Cm: BC đi qua trung điểm của KN
e) Qua B kẻ đường thẳng vuông góc với BC cắt CK ở I. Cm: góc IBK= góc HAM
Bài 1 em chỉ k biết làm câu d và e
2. Cho tam giác ABC. Trên tia BA lấy điểm E, trên tia CA lấy điểm F sao cho BE+CF=CF. Cm: đường trung trực của đoạn EF luôn đi qua một điểm cố định.
3. Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy M,N sao cho AM+AN=AB. Gọi K là trung điểm của MN. Cm: K thuộc 1 đường thẳng cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của KN và BC là V
Kẻ đường thẳng d qua K cắt BC tại L và song song với AN , ta có :
Vì KL // AN
=> Góc KLB = góc HCB (1)
Mà Góc KBL = góc HCB (từ câu a nếu chứng minh tam giác bằng nhau)
=> Góc KBL = góc KLB
=> Tam giác KLB cân tại K
=> KB = KL
Đồng thời KB = HC (cũng từ a)
=> KL = HC = CN (1) (giả thiết đề bài cho câu d)
Mặt khác cũng nhờ song song ,ta cũng có :
Góc LKV = góc CNV (2)
Góc KLV = góc NCV (3)
Xét tam giác KVL và tam giác NVC có :
(1)
(2) => tam giác KLV = tam giác NVC\
(3)
=> KV = VN
Vậy ......
Vì CK cắt BH tại M
Mà cả 2 đều là đường cao
=> AM cũng là đường cao
Vì tam giác ABC cân
=> AM là đường cao thì cũng là đường phân giác
=> góc BAL = góc CAL (1)
Gọi giao điểm của AM và BC là X
Ta có : AM vuông góc với BC tại X
IB vuông góc với BC tại B
=> AM // IB
=> Góc IBK = góc BAL
Mà ta lại có (1)
=> góc IBK = góc CAL (<=> góc HAM)
a) Xét \(\Delta BKC\) và \(\Delta CHB\) có:
BC (chung
\(\widehat{BKC}=\widehat{CHB}=90^0\)
\(\widehat{KBC}=\widehat{HCB}\) (\(\Delta ABC\) cân tại A)
Do đó: \(\Delta BKC=\Delta CHB\left(ch-gn\right)\)
=> BH = CK (hai cạnh tương ứng)
b) Ta có: BH là đường cao \(\Delta ABC\)
CK là đường cao \(\Delta ABC\)
mà BH cắt CK tại M
=> M là trực tâm
=> AM là đường cao \(\Delta ABC\)
AM cắt BC tại N
mà \(\Delta ABC\) cân tại A
=> BN = NC
Xét \(\Delta BMN\) và \(\Delta CMN\) có:
MN (chung)
\(\widehat{MNB}=\widehat{MNC}=90^0\)
BM = NC (cmt)
Do đó: \(\Delta BMN=\Delta CMN\left(c-g-c\right)\)
=> BM = CM (hai cạnh tương ứng)
=> \(\Delta BMN\) cân tại M
mik chỉ bt thế thui
1)
c) Xét Tam giác AHB và tam giác AKC; có :
AB=AC(gt)
Chung góc A
=> tg AHB= tg AKC(ch-gn)
=> AK=AH
=> tam giác AKH cân tại A
=> góc AKH = (180 độ - góc A )rồi chia cho 2
tam giác ABC cân tại A => góc B = (180 độ - góc A ) rồi chia 2
=> góc AKH = góc B
Mà góc này ở vị trí đồng vị nên KH//BC
d) Muốn chứng minh thì bạn làm như sau :
Kẻ KH//AC sao cho H thuộc BC
Rồi lấy M là trung điểm BC
Ta cm :M cũng là trung điểm KN
tam giác ABC cân tại A => góc ABC = góc ACB
KH//AC => góc KHB = góc ACB
=> góc ABC = góc KHB
=> tam giác KHB cân tại K
=> KH=KB
bạn tự CM : KB=HC nhé
KB=HC mà HC=CN => KB=CN mà KH=KB => KH=CN
r bạn xét tam giác KMH = tam giác NMC (c-g-c)
=> MD=ME
rồi từ đó bạn cũng cm được góc KMN = 180 độ
=> M là trung điểm DE => đpcm
Bài 1:
a: XétΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
\(\widehat{KBC}=\widehat{HCB}\)
Do đó: ΔKBC=ΔHCB
b: Ta có: ΔKBC=ΔHCB
nên \(\widehat{MCB}=\widehat{MBC}\)
hay ΔMBC cân tại M
c: Ta có: ΔKBC=ΔHCB
nên KB=HC
Ta có: AK+BK=AB
AH+HC=AC
mà BK=HC
và AB=AC
nên AK=AH
Xét ΔABC có AK/AB=AH/AC
nên KH//BC