K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

a/ Ta có:

\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

31 tháng 7 2018

a.\(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2019}-\sqrt{2018}}{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

Ta chứng minh được công thức \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{a+b}\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\sqrt{\dfrac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}\)

\(=\sqrt{\left(\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}=\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\)

\(=\dfrac{1}{b}+\dfrac{1}{a}-\dfrac{1}{a+b}\)

\(A=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)

\(=\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{1}+\dfrac{1}{3}-\dfrac{1}{4}+1+\dfrac{1}{2016}-\dfrac{1}{2017}+1+\dfrac{1}{2017}-\dfrac{1}{2018}\)

=>A là số hữu tỉ (ĐPCM)

26 tháng 8 2017

\(=\dfrac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}-\dfrac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\dfrac{\sqrt{3}+\sqrt{4}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{3}-\sqrt{4}\right)}-...+\dfrac{\sqrt{2017}+\sqrt{2018}}{\left(\sqrt{2017}+\sqrt{2018}\right)\left(\sqrt{2017}-\sqrt{2018}\right)}\)

\(=\dfrac{\sqrt{1}+\sqrt{2}}{1-2}-\dfrac{\sqrt{2}+\sqrt{3}}{2-3}+\dfrac{\sqrt{3}+\sqrt{4}}{3-4}-...+\dfrac{\sqrt{2017}+\sqrt{2018}}{2017-2018}\)

\(=-\left(\sqrt{1}+\sqrt{2}\right)+\sqrt{2}+\sqrt{3}-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2017}+\sqrt{2018}\right)\)

\(=-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...-\sqrt{2017}-\sqrt{2018}\)

\(=-\sqrt{1}-\sqrt{2018}\)

28 tháng 10 2017

bạn chứng minh bài toán tổng quát :  \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=1+\frac{1}{a}-\frac{1}{a+1}\)rồi áp dụng vào giải bài này nhé 

14 tháng 10 2021

Đặt \(2017=a\)

\(A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2a+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2\left(a+1\right)\cdot\dfrac{a}{a+1}+\left(\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\left|a+1-\dfrac{a}{a+1}\right|+\dfrac{a}{a+1}\)

Ta có \(\dfrac{a}{a+1}< 1\Leftrightarrow a+1-\dfrac{a}{a+1}>0\)

\(\Leftrightarrow A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2018\)

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Lời giải:

Xét \(1+\frac{1}{n^2}+\frac{1}{(n+1)^2}=\frac{n^2+1}{n^2}+\frac{1}{(n+1)^2}\)

\(=\frac{(n+1)^2-2n}{n^2}+\frac{1}{(n+1)^2}=\left(\frac{n+1}{n}\right)^2+\frac{1}{(n+1)^2}-\frac{2}{n}\)

\(=\left(\frac{n+1}{n}-\frac{1}{n+1}\right)^2=\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2\)

\(\Rightarrow \sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng vào bài toán suy ra:

\(A=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2017}-\frac{1}{2018}\)

\(=2016+\frac{1}{2}-\frac{1}{2018}=2016,5-\frac{1}{2018}\)

NV
16 tháng 1 2021

a. ĐKXĐ: \(x\ge-1\)

\(y=\sqrt{x^3+1+2\sqrt{x^3+1}+1}+\sqrt{x^3+1-2\sqrt{x^3+1}+1}\)

\(=\sqrt{\left(\sqrt{x^3+1}+1\right)^2}+\sqrt{\left(\sqrt{x^3+1}-1\right)^2}\)

\(=\left|\sqrt{x^3+1}+1\right|+\left|1-\sqrt{x^3+1}\right|\ge\left|\sqrt{x^3+1}+1+1-\sqrt{x^3+1}\right|=2\)

b.

\(f\left(x\right)=\dfrac{x-1}{2}+\dfrac{2}{x-1}+\dfrac{1}{2}\ge2\sqrt{\dfrac{2\left(x-1\right)}{2\left(x-1\right)}}+\dfrac{1}{2}=\dfrac{5}{2}\)

c.

\(y=\dfrac{x-2018+1}{\sqrt{x-2018}}=\sqrt{x-2018}+\dfrac{1}{\sqrt{x-2018}}\ge2\sqrt{\dfrac{\sqrt{x-2018}}{\sqrt{x-2018}}}=2\)